메뉴 건너뛰기




Volumn 8, Issue 4, 2014, Pages 401-412

Trill: A high-performance incremental query processor for diverse analytics

Author keywords

[No Author keywords available]

Indexed keywords

BIG DATA; HIGH LEVEL LANGUAGES;

EID: 84938816749     PISSN: None     EISSN: 21508097     Source Type: Journal    
DOI: 10.14778/2735496.2735503     Document Type: Conference Paper
Times cited : (157)

References (39)
  • 1
    • 84864256769 scopus 로고    scopus 로고
    • Temporal Analytics on Big Data for Web advertising
    • Badrish Chandramouli, Jonathan Goldstein, Songyun Duan. Temporal Analytics on Big Data for Web advertising. In ICDE, 2012.
    • (2012) ICDE
    • Chandramouli, B.1    Goldstein, J.2    Duan, S.3
  • 2
    • 84938819356 scopus 로고    scopus 로고
    • Scalable Progressive Analytics on Big Data in the Cloud
    • Badrish Chandramouli, Jonathan Goldstein, Abdul Quamar. Scalable Progressive Analytics on Big Data in the Cloud. In VLDB, 2014.
    • (2014) VLDB
    • Chandramouli, B.1    Goldstein, J.2    Quamar, A.3
  • 3
    • 52649148390 scopus 로고    scopus 로고
    • Consistent Streaming Through Time: A Vision for Event Stream Processing
    • R. Barga et al. Consistent Streaming Through Time: A Vision for Event Stream Processing. In CIDR, 2007.
    • (2007) CIDR
    • Barga, R.1
  • 5
    • 84880541136 scopus 로고    scopus 로고
    • Stat! - An Interactive Analytics Environment for Big Data
    • M. Barnett et al. Stat! - An Interactive Analytics Environment for Big Data. In SIGMOD, 2013.
    • (2013) SIGMOD
    • Barnett, M.1
  • 6
    • 85199290074 scopus 로고    scopus 로고
    • Enhancements to SQL Server Column Stores
    • P. Larson et al. Enhancements to SQL Server Column Stores. In VLDB, 2013.
    • (2013) VLDB
    • Larson, P.1
  • 10
    • 34547285007 scopus 로고    scopus 로고
    • The design of the Borealis stream processing engine
    • D. Abadi et al. The design of the Borealis stream processing engine. In CIDR, 2005.
    • (2005) CIDR
    • Abadi, D.1
  • 11
    • 2442715487 scopus 로고    scopus 로고
    • Nile: A Query Processing Engine for Data Streams
    • M. Hammad et al.: Nile: A Query Processing Engine for Data Streams. ICDE 2004: 851.
    • (2004) ICDE , pp. 851
    • Hammad, M.1
  • 13
    • 85084012447 scopus 로고    scopus 로고
    • How to fit when no one size fits
    • H. Lim et al. How to fit when no one size fits. In CIDR, 2013.
    • (2013) CIDR
    • Lim, H.1
  • 14
    • 85199308603 scopus 로고    scopus 로고
    • Vertica. http://www.vertica.com/.
    • Vertica
  • 15
    • 79957807756 scopus 로고    scopus 로고
    • Accurate Latency Estimation in a Distributed Event Processing System
    • B. Chandramouli et al. Accurate Latency Estimation in a Distributed Event Processing System. In ICDE, 2011.
    • (2011) ICDE
    • Chandramouli, B.1
  • 18
    • 84891121890 scopus 로고    scopus 로고
    • REEF: Retainable Evaluator Execution Framework
    • B. Chun et al. REEF: Retainable Evaluator Execution Framework. PVLDB 6(12): 1370-1373 (2013).
    • (2013) PVLDB , vol.6 , Issue.12 , pp. 1370-1373
    • Chun, B.1
  • 20
    • 84860560293 scopus 로고    scopus 로고
    • SCOPE: easy and efficient parallel processing of massive data sets
    • R. Chaiken et al. SCOPE: easy and efficient parallel processing of massive data sets. PVLDB, 1(2), 2008.
    • (2008) PVLDB , vol.1 , Issue.2
    • Chaiken, R.1
  • 24
    • 33745618477 scopus 로고    scopus 로고
    • C-Store - A Column-Oriented DBMS
    • M. Stonebraker et al. C-Store - A Column-Oriented DBMS. In VLDB, 2005.
    • (2005) VLDB
    • Stonebraker, M.1
  • 25
    • 33749585668 scopus 로고    scopus 로고
    • MonetDB/X100: Hyper-pipelining query execution
    • P. A. Boncz, M. Zukowski, and N.Nes, MonetDB/X100: Hyper-pipelining query execution. CIDR, 2005, 225-237.
    • (2005) CIDR , pp. 225-237
    • Boncz, P.A.1    Zukowski, M.2    Nes, N.3
  • 26
    • 84873118293 scopus 로고    scopus 로고
    • Massively parallel sort-merge joins in main memory multi-core database systems
    • M.-C. Albutiu et al. Massively parallel sort-merge joins in main memory multi-core database systems. In VLDB, 2012.
    • (2012) VLDB
    • Albutiu, M.-C.1
  • 27
    • 70350512695 scopus 로고    scopus 로고
    • A comparison of approaches to large-scale data analysis
    • A. Pavlo et al. A comparison of approaches to large-scale data analysis. In SIGMOD, 2009.
    • (2009) SIGMOD
    • Pavlo, A.1
  • 28
    • 84862681431 scopus 로고    scopus 로고
    • Shark: Fast Data Analysis Using Coarse-grained Distributed Memory
    • C. Engle et al. Shark: Fast Data Analysis Using Coarse-grained Distributed Memory. In SIGMOD, 2012.
    • (2012) SIGMOD
    • Engle, C.1
  • 29
    • 84904332358 scopus 로고    scopus 로고
    • Apache Storm. http://storm.incubator.apache.org/.
    • Apache Storm
  • 30
    • 0036042175 scopus 로고    scopus 로고
    • Models and issues in data stream systems
    • B. Babcock et al. Models and issues in data stream systems. In PODS 2002.
    • (2002) PODS
    • Babcock, B.1
  • 31
    • 0026618521 scopus 로고
    • Temporal Specialization
    • C. Jensen et al. Temporal Specialization. In ICDE, 1992.
    • (1992) ICDE
    • Jensen, C.1
  • 33
    • 85199259374 scopus 로고    scopus 로고
    • BlinkDB. http://blinkdb.org/.
    • BlinkDB
  • 34
    • 84889637396 scopus 로고    scopus 로고
    • Discretized Streams: Fault-Tolerant Streaming Computation at Scale
    • M. Zaharia et al. Discretized Streams: Fault-Tolerant Streaming Computation at Scale. In SOSP, 2013.
    • (2013) SOSP
    • Zaharia, M.1
  • 35
    • 84889658377 scopus 로고    scopus 로고
    • Naiad: A Timely Dataflow System
    • D. Murray et al. Naiad: A Timely Dataflow System. In SOSP, 2013.
    • (2013) SOSP
    • Murray, D.1
  • 37
    • 84938816025 scopus 로고    scopus 로고
    • Enhanced Stream Processing in a DBMS Kernel
    • E. Liarou et al. Enhanced Stream Processing in a DBMS Kernel. In EDBT, 2013.
    • (2013) EDBT
    • Liarou, E.1
  • 38
    • 84891087050 scopus 로고    scopus 로고
    • MillWheel: Fault-Tolerant Stream Processing at Internet Scale
    • T. Akidau et al. MillWheel: Fault-Tolerant Stream Processing at Internet Scale. In VLDB, 2013.
    • (2013) VLDB
    • Akidau, T.1
  • 39
    • 84905829327 scopus 로고    scopus 로고
    • S-Store: A Streaming NewSQL System for Big Velocity Applications
    • U. Cetintemel et al. S-Store: A Streaming NewSQL System for Big Velocity Applications. In VLDB, 2014.
    • (2014) VLDB
    • Cetintemel, U.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.