메뉴 건너뛰기




Volumn 2015-August, Issue , 2015, Pages 4714-4718

Unsupervised data selection and word-morph mixed language model for Tamil low-resource keyword search

Author keywords

active learning; keyword spotting; spoken term detection; Submodular optimization

Indexed keywords

AUDIO SIGNAL PROCESSING; COMPUTATIONAL LINGUISTICS; DATA REDUCTION; MODELING LANGUAGES; NATURAL LANGUAGE PROCESSING SYSTEMS; SAFETY DEVICES; SPEECH; SPEECH COMMUNICATION; SPEECH RECOGNITION;

EID: 84938721918     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2015.7178865     Document Type: Conference Paper
Times cited : (26)

References (39)
  • 1
  • 5
    • 85043467612 scopus 로고    scopus 로고
    • Submodular data selection with acoustic and phonetic features for speech recognition
    • C. Ni, L. Wang, H. Liu, C.-C. Leung, L. Lu, and B. Ma. "Submodular Data Selection with Acoustic and Phonetic Features for Speech Recognition," in Proc. ICASSP 2015
    • (2015) Proc. ICASSP
    • Ni, C.1    Wang, L.2    Liu, H.3    Leung, C.-C.4    Lu, L.5    Ma, B.6
  • 6
    • 85009275225 scopus 로고    scopus 로고
    • Approaches to language identification using Gaussian mixture models and shifted delta cepstral features
    • P. A. Torres-Carrasquillo, E. Singer, M. K. R. J. Greene, D. Reynolds.,, "Approaches to language identification using Gaussian mixture models and shifted delta cepstral features," in Proc. ICSLP 2002, pp. 89-92
    • (2002) Proc. ICSLP , pp. 89-92
    • Torres-Carrasquillo, P.A.1    Singer, E.2    Greene, M.K.R.J.3    Reynolds, D.4
  • 8
    • 70450220373 scopus 로고    scopus 로고
    • How to select a good training-data subset for transcription: Submodular active selection for sequences
    • H. Lin and J. Bilmes, "How to Select a Good Training-data Subset for Transcription: Submodular Active Selection for Sequences," in Proc. Interspeech 2009, pp. 2859-2862
    • (2009) Proc. Interspeech , pp. 2859-2862
    • Lin, H.1    Bilmes, J.2
  • 9
    • 84905244750 scopus 로고    scopus 로고
    • Unsupervised submodular subset selection for speech data
    • K. Wei, Y. Liu, K. Kirchhoff, and J. Bilmes, "Unsupervised Submodular Subset Selection for Speech Data," in Proc. ICASSP 2014, pp. 4107-4111
    • (2014) Proc. ICASSP , pp. 4107-4111
    • Wei, K.1    Liu, Y.2    Kirchhoff, K.3    Bilmes, J.4
  • 10
    • 84905251799 scopus 로고    scopus 로고
    • Submodular subset selection for large-scale speech training data
    • K. Wei, Y. Liu, K. Kirchhoff, C. Bartels and J. Bilmes, "Submodular Subset Selection for Large-Scale Speech Training Data," in Proc. ICASSP 2014, pp. 3311-3315
    • (2014) Proc. ICASSP , pp. 3311-3315
    • Wei, K.1    Liu, Y.2    Kirchhoff, K.3    Bartels, C.4    Bilmes, J.5
  • 11
    • 84926184611 scopus 로고    scopus 로고
    • Using document summarization techniques for speech data subset selection
    • K. Wei, Y. Liu, K. Kirchhoff, and J. Bilmes, "Using Document Summarization Techniques for Speech Data Subset Selection," in Proc. NAACL/HLT-2013, pp. 721-726
    • (2013) Proc. NAACL/HLT , pp. 721-726
    • Wei, K.1    Liu, Y.2    Kirchhoff, K.3    Bilmes, J.4
  • 12
    • 84905270897 scopus 로고    scopus 로고
    • A submodular optimization approach to sentence set selection
    • Y. Shinohara, "A Submodular Optimization Approach to Sentence Set Selection," in Proc. ICASSP 2014, pp. 4140-4143
    • (2014) Proc. ICASSP , pp. 4140-4143
    • Shinohara, Y.1
  • 13
    • 84905225575 scopus 로고    scopus 로고
    • IVector-based acoustic data selection
    • O. Siohan, and M. Bacchiani, "iVector-based Acoustic Data Selection," in Proc. Interspeech 2013, pp. 657-661
    • (2013) Proc. Interspeech , pp. 657-661
    • Siohan, O.1    Bacchiani, M.2
  • 14
    • 84905251985 scopus 로고    scopus 로고
    • Training data selection based on context-dependent state matching
    • O. Siohan, "Training Data Selection Based on Context-Dependent State Matching," in Proc. ICASSP 2014, pp. 3316-3319
    • (2014) Proc. ICASSP , pp. 3316-3319
    • Siohan, O.1
  • 15
    • 0036293684 scopus 로고    scopus 로고
    • Active learning for automatic speech recognition
    • D. Hakkani-Tur, G. Riccardi, and A. Gorin, "Active Learning for Automatic Speech Recognition, in Proc. ICASSP 2002, pp. 3904-3907
    • (2002) Proc. ICASSP , pp. 3904-3907
    • Hakkani-Tur, D.1    Riccardi, G.2    Gorin, A.3
  • 16
    • 85009201768 scopus 로고    scopus 로고
    • Active and unsupervised learning for automatic speech recognition
    • G. Riccardi and D. Hakkani-Tur, "Active and Unsupervised Learning for Automatic Speech Recognition," in Proc. Eurospeech 2003, pp. 1825-1828
    • (2003) Proc. Eurospeech , pp. 1825-1828
    • Riccardi, G.1    Hakkani-Tur, D.2
  • 17
    • 0141814683 scopus 로고    scopus 로고
    • Active learning for spoken language understanding
    • G. Tur, R. E. Schapire, and D. Hakkani-Tur, "Active Learning for Spoken Language Understanding," in Proc. ICASSP 2003,pp. I-276-I-279
    • (2003) Proc. ICASSP , pp. 1276-1279
    • Tur, G.1    Schapire, R.E.2    Hakkani-Tur, D.3
  • 18
    • 33745216087 scopus 로고    scopus 로고
    • Selective sampling of training data for speech recognition
    • San Diego, CA
    • T. M. Kamm and G. G. L. Meyer, "Selective Sampling of Training Data for Speech Recognition," in Proc. Human Language Technology Conf., San Diego, CA, 2002
    • (2002) Proc. Human Language Technology Conf
    • Kamm, T.M.1    Meyer, G.G.L.2
  • 19
    • 44849132070 scopus 로고    scopus 로고
    • Data selection for speech recognition
    • Y. Wu, R. Zhang, and A. Rudnicky, "Data Selection for Speech Recognition," in Proc. ASRU 2007, pp. 562-565
    • (2007) Proc. ASRU , pp. 562-565
    • Wu, Y.1    Zhang, R.2    Rudnicky, A.3
  • 21
    • 0000095809 scopus 로고
    • An analysis of approximations for maximizing submodular set function-i
    • G. Nemhauser, L. Wolsey, and M. Fisher, "An Analysis of Approximations for Maximizing Submodular Set Function-I," Mathematical Programming,1978, 14(1):265-294
    • (1978) Mathematical Programming , vol.14 , Issue.1 , pp. 265-294
    • Nemhauser, G.1    Wolsey, L.2    Fisher, M.3
  • 22
    • 0032108328 scopus 로고    scopus 로고
    • A Threshold of ln n for Approximating Set Cover
    • U. Feige, "A Threshold of ln n for Approximating Set Cover," Journal of the ACM (JACM), 1998,45(4):634-652
    • (1998) Journal of the ACM (JACM) , vol.45 , Issue.4 , pp. 634-652
    • Feige, U.1
  • 23
    • 70350125882 scopus 로고    scopus 로고
    • An overview of textindependent speaker recognition: From features to supervectors
    • T. Kinnunen, and Haizhou Li, "An Overview of Textindependent Speaker Recognition: From Features to Supervectors," Speech Communication, 2010:52(1):12-40
    • (2010) Speech Communication , vol.52 , Issue.1 , pp. 12-40
    • Kinnunen, T.1    Li, H.2
  • 24
    • 80051646102 scopus 로고    scopus 로고
    • Unsupervised spoken keyword spotting via segmental DTW on Gaussian posteriorgrams
    • Y. Zhang, anf J. R. Class, "Unsupervised Spoken Keyword Spotting via Segmental DTW on Gaussian Posteriorgrams," in Proc. ASRU 2009
    • (2009) Proc. ASRU
    • Zhang, Y.1    Class, R.A.J.2
  • 25
    • 84906281211 scopus 로고    scopus 로고
    • Unsupervised mining of acoustic subword units with segment-level Gaussian posteriorgrams
    • H. Wang, T. Lee, C.-C. Leung, B. Ma and H. Li, "Unsupervised Mining of Acoustic Subword Units With Segment-level Gaussian Posteriorgrams," in Proc. Interspeech 2013, pp.2297-2301
    • (2013) Proc. Interspeech , pp. 2297-2301
    • Wang, H.1    Lee, T.2    Leung, C.-C.3    Ma, B.4    Li, H.5
  • 27
    • 84867596539 scopus 로고    scopus 로고
    • Acoustic texttiling for story segmentation of spoken documents
    • L. Zhang, C.-C. Leung, L. Xie, B. Ma, and H. Li, "Acoustic TextTiling for Story Segmentation of Spoken Documents," in Proc. ICASSP 2012, pp.5121-5124
    • (2012) Proc. ICASSP , pp. 5121-5124
    • Zhang, L.1    Leung, C.-C.2    Xie, L.3    Ma, B.4    Li, H.5
  • 29
    • 84889843868 scopus 로고    scopus 로고
    • Learning with submodular functions: A convex optimization perspective
    • F. Bach, "Learning with Submodular Functions: A Convex Optimization Perspective," Foundations and Trends ® in Machine Learning," 2013,6(2-3): 145-373
    • (2013) Foundations and Trends in Machine Learning , vol.6 , Issue.2-3 , pp. 145-373
    • Bach, F.1
  • 32
    • 84872251802 scopus 로고    scopus 로고
    • Improvement of rule based morphological analysis and pos tagging in Tamil language via projection and induction techniques
    • M.Selvam, and A. M. Natarajan, "Improvement of Rule Based Morphological Analysis and POS Tagging in Tamil Language via Projection and Induction Techniques," International Journal of Computers, 2009, 3(4):357-367
    • (2009) International Journal of Computers , vol.3 , Issue.4 , pp. 357-367
    • Selvam, M.1    Natarajan, A.M.2
  • 33
    • 84937825475 scopus 로고    scopus 로고
    • Morfessor 20 toolkit for statistical morphological segmentation
    • P. Smit, S. Virpioja, S.-A. Gronroos, and M. Kurimo, "Morfessor 2.0: Toolkit for statistical morphological segmentation," in Proc. ECACL 2014, pp.21-24
    • (2014) Proc. ECACL , pp. 21-24
    • Smit, P.1    Virpioja, S.2    Gronroos, S.-A.3    Kurimo, M.4
  • 34
    • 84946033310 scopus 로고    scopus 로고
    • phonetisaurus-A WFST-driven Phoneticizer, Available On-line: https://code.google.com/p/phonetisaurus
  • 36
    • 84938721921 scopus 로고    scopus 로고
    • A keyword-aware grammar framework for LVCSR-based spoken keyword search
    • I-F. Chen, C. Ni, B. P. Lim, N. F. Chen, C.-H. Lee, "A Keyword-Aware Grammar Framework for LVCSR-based Spoken Keyword Search," in Proc. ICASSP 2015
    • (2015) Proc. ICASSP
    • Chen, I.-F.1    Ni, C.2    Lim, B.P.3    Chen, N.F.4    Lee, C.-H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.