메뉴 건너뛰기




Volumn 22, Issue 8, 2015, Pages 715-728

Discovering What Dimensionality Reduction Really Tells Us about RNA-Seq Data

Author keywords

Dimensionality reduction; mutual information; RNA Seq.

Indexed keywords

ALGORITHM; ANTIBODY SPECIFICITY; BIOLOGY; GENE EXPRESSION PROFILING; PRINCIPAL COMPONENT ANALYSIS; PROCEDURES; SEQUENCE ANALYSIS;

EID: 84938383708     PISSN: 10665277     EISSN: None     Source Type: Journal    
DOI: 10.1089/cmb.2015.0085     Document Type: Article
Times cited : (7)

References (22)
  • 1
    • 47249132568 scopus 로고    scopus 로고
    • High-resolution modeling of cellular signaling networks
    • Baym, M., Bakal, C., Perrimon, N., and Berger, B. 2008. High-resolution modeling of cellular signaling networks. RECOMB. 4955, 257-271.
    • (2008) RECOMB , vol.4955 , pp. 257-271
    • Baym, M.1    Bakal, C.2    Perrimon, N.3    Berger, B.4
  • 2
    • 84899574465 scopus 로고    scopus 로고
    • Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
    • Bendall, S., et al. 2014. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell. 157, 714-725.
    • (2014) Cell , vol.157 , pp. 714-725
    • Bendall, S.1
  • 3
    • 13244267007 scopus 로고    scopus 로고
    • Estimating mutual information using B-spline functions an improved similarity measure for analysing gene expression data
    • Daub, C., Steuer, R., Selbig, J., and Kloskam, S. 2004. Estimating mutual information using B-spline functions an improved similarity measure for analysing gene expression data. BMC Bioinform. 5, 118.
    • (2004) BMC Bioinform , vol.5 , pp. 118
    • Daub, C.1    Steuer, R.2    Selbig, J.3    Kloskam, S.4
  • 4
    • 48249151183 scopus 로고    scopus 로고
    • Nonnegative matrix factorization: An analytical and interpretive tool in computational biology
    • Devarajan, K. 2008. Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput. Biol. 4, e1000029.
    • (2008) PLoS Comput. Biol. , vol.4 , pp. e1000029
    • Devarajan, K.1
  • 5
    • 0037318785 scopus 로고    scopus 로고
    • On estimating p-values by Monte Carlo methods
    • Ewens, W. 2003. On estimating p-values by Monte Carlo methods. Am. J. Hum. Genet. 71, 496-498.
    • (2003) Am. J. Hum. Genet. , vol.71 , pp. 496-498
    • Ewens, W.1
  • 6
    • 84887084951 scopus 로고    scopus 로고
    • Network-based stratification of tumor mutations
    • Hofree, M., Shen, J., Carter, H., et al. 2013. Network-based stratification of tumor mutations. Nat. Methods. 10, 1108-1115.
    • (2013) Nat. Methods. , vol.10 , pp. 1108-1115
    • Hofree, M.1    Shen, J.2    Carter, H.3
  • 7
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest eigenvalues in principal component analysis
    • Johnstone, I. 2001. On the distribution of the largest eigenvalues in principal component analysis. Ann. Stat. 29, 295-327.
    • (2001) Ann. Stat. , vol.29 , pp. 295-327
    • Johnstone, I.1
  • 8
    • 66349108229 scopus 로고    scopus 로고
    • IsoRankN: Spectral methods for global alignment of multiple protein networks
    • Liao, C., et al. 2009. IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics. 25, 253-258.
    • (2009) Bioinformatics , vol.25 , pp. 253-258
    • Liao, C.1
  • 9
    • 84878682420 scopus 로고    scopus 로고
    • The genotype-tissue expression GTEx project
    • Lonsdale, J., et al. 2013. The genotype-tissue expression GTEx project. Nat. Genet. 45, 580-585.
    • (2013) Nat. Genet. , vol.45 , pp. 580-585
    • Lonsdale, J.1
  • 10
    • 47749094307 scopus 로고    scopus 로고
    • Defining diversity, specialization, and gene specificity in transcriptomes through information theory
    • Martinez, O., and Reyes-Valdes, M. 2008. Defining diversity, specialization, and gene specificity in transcriptomes through information theory. PNAS. 105, 9709-9714.
    • (2008) PNAS , vol.105 , pp. 9709-9714
    • Martinez, O.1    Reyes-Valdes, M.2
  • 11
    • 0018080152 scopus 로고
    • Synthetic maps of human gene frequency in Europeans
    • Menozzi, P., Piazza, A., and Cavalli-Sforza, L. 1978. Synthetic maps of human gene frequency in Europeans. Science. 201, 786-792.
    • (1978) Science , vol.201 , pp. 786-792
    • Menozzi, P.1    Piazza, A.2    Cavalli-Sforza, L.3
  • 12
    • 0036071235 scopus 로고    scopus 로고
    • A note on the calculation of emperical p-values from Monte Carlo procedure
    • North, B., et al. 2002. A note on the calculation of emperical p-values from Monte Carlo procedure. Am. J. Hum. Genet. 71, 439-441.
    • (2002) Am. J. Hum. Genet. , vol.71 , pp. 439-441
    • North, B.1
  • 13
    • 84865095919 scopus 로고    scopus 로고
    • A gene expression profile of stem cell pluripotentiality and differentiation is conserved across diverse solid and hematopoietic cancers
    • Palmer, N., et al. 2012. A gene expression profile of stem cell pluripotentiality and differentiation is conserved across diverse solid and hematopoietic cancers. Genome Biol. 13, R71.
    • (2012) Genome Biol , vol.13 , pp. R71
    • Palmer, N.1
  • 14
    • 84911406694 scopus 로고    scopus 로고
    • Preserving biological heterogeneity with a permuted surrogate variable analysis for genomics batch correction
    • Parker, N., et al. 2014. Preserving biological heterogeneity with a permuted surrogate variable analysis for genomics batch correction. Bioinformatics. 30, 2757-2763.
    • (2014) Bioinformatics , vol.30 , pp. 2757-2763
    • Parker, N.1
  • 15
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, H., Long, F., and Ding, C. 2005. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226-1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 16
    • 33746512512 scopus 로고    scopus 로고
    • Principal components analysis for stratification in genome-wide association studies
    • Price, A., et al. 2006. Principal components analysis for stratification in genome-wide association studies. Nat. Genet. 38, 904-909.
    • (2006) Nat. Genet. , vol.38 , pp. 904-909
    • Price, A.1
  • 17
    • 83755163018 scopus 로고    scopus 로고
    • Detecting novel associations in large data sets
    • Reshef, D., et al. 2011. Detecting novel associations in large data sets. Science. 334, 1518-1524.
    • (2011) Science , vol.334 , pp. 1518-1524
    • Reshef, D.1
  • 18
    • 84859568179 scopus 로고    scopus 로고
    • Making sense out of massive data by going beyond differential expression
    • Schmid, P., et al. 2012. Making sense out of massive data by going beyond differential expression. PNAS. 109, 5549-5906
    • (2012) PNAS , vol.109 , pp. 5549-5906
    • Schmid, P.1
  • 19
    • 84920550975 scopus 로고    scopus 로고
    • A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium
    • SEQC/MAQC-III Consortium
    • SEQC/MAQC-III Consortium. 2014. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat. Biotechnol. 32, 903-914.
    • (2014) Nat. Biotechnol , vol.32 , pp. 903-914
  • 20
    • 77951634577 scopus 로고    scopus 로고
    • Cell type-specific gene expression differences in complex tissues
    • Shen-Orr, S., et al. 2011. Cell type-specific gene expression differences in complex tissues. Nat. Methods. 7, 287-289.
    • (2011) Nat. Methods. , vol.7 , pp. 287-289
    • Shen-Orr, S.1
  • 21
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • Yeung, K., and Ruzzo, W. 2001. Principal component analysis for clustering gene expression data. Bioinformatics. 17, 763-774.
    • (2001) Bioinformatics , vol.17 , pp. 763-774
    • Yeung, K.1    Ruzzo, W.2
  • 22
    • 70249108504 scopus 로고    scopus 로고
    • Genome-wide identification of post-translational modulators of transcription factor activity in human B cells
    • Wang, K., et al. 2009. Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat. Biotechnol. 27, 829-837.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 829-837
    • Wang, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.