메뉴 건너뛰기




Volumn 300, Issue , 2015, Pages 433-442

The real-time estimation of hazardous gas dispersion by the integration of gas detectors, neural network and gas dispersion models

Author keywords

Artificial neural network; Chlorine release; Gas detectors; Gas dispersion; PHAST

Indexed keywords

ATMOSPHERIC MOVEMENTS; BALLOONS; CHEMICAL INDUSTRY; CHLORINE; GAS DETECTORS; GASES; HAZARDS; NEURAL NETWORKS;

EID: 84938078457     PISSN: 03043894     EISSN: 18733336     Source Type: Journal    
DOI: 10.1016/j.jhazmat.2015.07.028     Document Type: Article
Times cited : (75)

References (32)
  • 4
    • 0033096641 scopus 로고    scopus 로고
    • Comparison of EPA guidelines tables with a commercial model
    • Woodward J.L., Worthington D.R.E. Comparison of EPA guidelines tables with a commercial model. Process Saf. Prog. 1999, 18:25-30.
    • (1999) Process Saf. Prog. , vol.18 , pp. 25-30
    • Woodward, J.L.1    Worthington, D.R.E.2
  • 5
    • 19544376144 scopus 로고    scopus 로고
    • CFD prediction of odour dispersion and plume visibility for alumina refinery calciner stacks
    • Brown G.J., Fletcher D.F. CFD prediction of odour dispersion and plume visibility for alumina refinery calciner stacks. Process Saf. Environ. Prot. 2005, 83:231-241.
    • (2005) Process Saf. Environ. Prot. , vol.83 , pp. 231-241
    • Brown, G.J.1    Fletcher, D.F.2
  • 6
    • 0032051706 scopus 로고    scopus 로고
    • An evaluation of topographical effects on neutral and heavy-gas dispersion with a CFD model
    • Burman J. An evaluation of topographical effects on neutral and heavy-gas dispersion with a CFD model. J. Wind Eng. Ind. Aerodyn. 1998, 74-76:315-325.
    • (1998) J. Wind Eng. Ind. Aerodyn. , pp. 315-325
    • Burman, J.1
  • 8
    • 77953706334 scopus 로고    scopus 로고
    • CFD simulations of ammonia dispersion using dynamic boundary conditions
    • Labovský J., Jelemenský Ľ. CFD simulations of ammonia dispersion using dynamic boundary conditions. Process Saf. Environ. Prot. 2010, 88:243-252.
    • (2010) Process Saf. Environ. Prot. , vol.88 , pp. 243-252
    • Labovský, J.1    Jelemenský, Ľ.2
  • 10
    • 32944469519 scopus 로고    scopus 로고
    • Consequence analysis-using a CFD model for industrial sites
    • Dharmavaram S., Hanna S.R., Hansen O.R. Consequence analysis-using a CFD model for industrial sites. Process Saf. Prog. 2005, 24:316-372.
    • (2005) Process Saf. Prog. , vol.24 , pp. 316-372
    • Dharmavaram, S.1    Hanna, S.R.2    Hansen, O.R.3
  • 11
    • 74449087783 scopus 로고    scopus 로고
    • Hazardous gas releases in urban areas: assessment of consequences through CFD modelling
    • Pontiggia M., Derudi M., Alba M., Scaioni M., Rota R. Hazardous gas releases in urban areas: assessment of consequences through CFD modelling. J. Hazard. Mater. 2010, 176:589-596.
    • (2010) J. Hazard. Mater. , vol.176 , pp. 589-596
    • Pontiggia, M.1    Derudi, M.2    Alba, M.3    Scaioni, M.4    Rota, R.5
  • 12
    • 57949115686 scopus 로고    scopus 로고
    • CFD model simulation of dispersion from chlorine railcar releases in industrial and urban areas
    • Hanna S.R., Hansen O.R., Ichard M., Strimaitis D. CFD model simulation of dispersion from chlorine railcar releases in industrial and urban areas. Atmos. Environ. 2009, 43:262-270.
    • (2009) Atmos. Environ. , vol.43 , pp. 262-270
    • Hanna, S.R.1    Hansen, O.R.2    Ichard, M.3    Strimaitis, D.4
  • 14
    • 10644249159 scopus 로고    scopus 로고
    • Simplified modelling for risk assessment of hydrocarbon spills in port area
    • Palazzi E., Currò F., Fabiano B. Simplified modelling for risk assessment of hydrocarbon spills in port area. Process Saf. Environ. Prot. 2004, 82:412-420.
    • (2004) Process Saf. Environ. Prot. , vol.82 , pp. 412-420
    • Palazzi, E.1    Currò, F.2    Fabiano, B.3
  • 15
    • 82755182823 scopus 로고    scopus 로고
    • Dispersion of the vapour cloud in the Buncefield Incident
    • Gant S.E., Atkinson G.T. Dispersion of the vapour cloud in the Buncefield Incident. Process Saf. Environ. Prot. 2011, 89:391-403.
    • (2011) Process Saf. Environ. Prot. , vol.89 , pp. 391-403
    • Gant, S.E.1    Atkinson, G.T.2
  • 16
    • 83255187234 scopus 로고    scopus 로고
    • Sensitivity analysis of Phast's atmospheric dispersion model for three toxic materials (nitric oxide, ammonia, chlorine)
    • Pandya N., Gabas N., Marsden E. Sensitivity analysis of Phast's atmospheric dispersion model for three toxic materials (nitric oxide, ammonia, chlorine). J. Loss Prev. Process Ind. 2012, 25:20-32.
    • (2012) J. Loss Prev. Process Ind. , vol.25 , pp. 20-32
    • Pandya, N.1    Gabas, N.2    Marsden, E.3
  • 17
    • 77953721222 scopus 로고    scopus 로고
    • Quantitative risk analysis of toxic gas release caused poisoning-a CFD and dose-response model combined approach
    • Zhang B., Chen G.-M. Quantitative risk analysis of toxic gas release caused poisoning-a CFD and dose-response model combined approach. Process Saf. Environ. Prot. 2010, 88:253-262.
    • (2010) Process Saf. Environ. Prot. , vol.88 , pp. 253-262
    • Zhang, B.1    Chen, G.-M.2
  • 18
    • 38749142585 scopus 로고    scopus 로고
    • Accidental release of toxic chemicals: influence of the main input parameters on consequence calculation
    • Bubbico R., Mazzarotta B. Accidental release of toxic chemicals: influence of the main input parameters on consequence calculation. J. Hazard. Mater. 2008, 151:394-406.
    • (2008) J. Hazard. Mater. , vol.151 , pp. 394-406
    • Bubbico, R.1    Mazzarotta, B.2
  • 19
    • 77955208441 scopus 로고    scopus 로고
    • The estimation of hazardous Gas release rate using optical sensor and neural network
    • So W., Koo J., Shin D., Yoon E.S. The estimation of hazardous Gas release rate using optical sensor and neural network. Comput. Aided Chem. Eng. 2010, 28:199-204.
    • (2010) Comput. Aided Chem. Eng. , vol.28 , pp. 199-204
    • So, W.1    Koo, J.2    Shin, D.3    Yoon, E.S.4
  • 20
    • 77955897276 scopus 로고    scopus 로고
    • Optical sensor and neural networks for real-time monitoring and estimation of hazardous gas release rate
    • So W., Koo J., Shin D., Yoon E.S. Optical sensor and neural networks for real-time monitoring and estimation of hazardous gas release rate. J. Chem. Eng. Jpn. 2010, 43:682-690.
    • (2010) J. Chem. Eng. Jpn. , vol.43 , pp. 682-690
    • So, W.1    Koo, J.2    Shin, D.3    Yoon, E.S.4
  • 22
    • 84938132813 scopus 로고    scopus 로고
    • Risk assessment, management and uncertainties
    • John Wiley & Sons, Ltd.
    • Griffiths R. Risk assessment, management and uncertainties. Encyclopedia of Environmetrics 2006, John Wiley & Sons, Ltd.
    • (2006) Encyclopedia of Environmetrics
    • Griffiths, R.1
  • 23
    • 33947140176 scopus 로고    scopus 로고
    • Assessment of the consequences of accident scenarios involving dangerous substances
    • Pintarič Z.N. Assessment of the consequences of accident scenarios involving dangerous substances. Process Saf. Environ. Prot. 2007, 85:23-38.
    • (2007) Process Saf. Environ. Prot. , vol.85 , pp. 23-38
    • Pintarič, Z.N.1
  • 25
    • 84901690157 scopus 로고    scopus 로고
    • Worst-case identification of gas dispersion for gas detector mapping using dispersion modeling
    • Meysami H., Ebadi T., Zohdirad H., Minepur M. Worst-case identification of gas dispersion for gas detector mapping using dispersion modeling. J. Loss Prev. Process Ind. 2013, 26:1407-1414.
    • (2013) J. Loss Prev. Process Ind. , vol.26 , pp. 1407-1414
    • Meysami, H.1    Ebadi, T.2    Zohdirad, H.3    Minepur, M.4
  • 26
    • 70349246361 scopus 로고    scopus 로고
    • Hazardous gas dispersion: a CFD model accounting for atmospheric stability classes
    • Pontiggia M., Derudi M., Busini V., Rota R. Hazardous gas dispersion: a CFD model accounting for atmospheric stability classes. J. Hazard. Mater. 2009, 171:739-747.
    • (2009) J. Hazard. Mater. , vol.171 , pp. 739-747
    • Pontiggia, M.1    Derudi, M.2    Busini, V.3    Rota, R.4
  • 27
    • 0003574656 scopus 로고
    • US Department of Health, Education, and Welfare, National Center for Air Pollution Control
    • Turner D.B. Workbook of Atmospheric Dispersion Estimates 1970, US Department of Health, Education, and Welfare, National Center for Air Pollution Control.
    • (1970) Workbook of Atmospheric Dispersion Estimates
    • Turner, D.B.1
  • 28
    • 0002133014 scopus 로고
    • The estimation of the dispersion of windborne material
    • Pasquill F. The estimation of the dispersion of windborne material. Meteorol. Mag. 1961, 90:33-49.
    • (1961) Meteorol. Mag. , vol.90 , pp. 33-49
    • Pasquill, F.1
  • 29
    • 84938132814 scopus 로고    scopus 로고
    • Safety Advice for Bulk Chlorine Installations
    • H. Books, Safety Advice for Bulk Chlorine Installations, 1999.
    • (1999)
    • Books, H.1
  • 30
    • 84938132815 scopus 로고    scopus 로고
    • ERPG/WEEL Handbook, in, AIHA Guideline Foundation
    • ERPG, ERPG/WEEL Handbook, in, AIHA Guideline Foundation, 2013.
    • (2013)
  • 31
    • 0031195390 scopus 로고    scopus 로고
    • An efficient sampling technique for off-line quality control
    • Kalagnanam J.R., Diwekar U.M. An efficient sampling technique for off-line quality control. Technometrics 1997, 39:308-319.
    • (1997) Technometrics , vol.39 , pp. 308-319
    • Kalagnanam, J.R.1    Diwekar, U.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.