메뉴 건너뛰기




Volumn 8, Issue 3, 2014, Pages 305-316

Scalable topical phrase mining from text corpora

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM MODEL; HIGH QUALITY; LOW QUALITIES; MULTI-WORD; N-GRAMS; POST-PROCESSING; SINGLE WORDS; TEXT CORPORA; TOPIC MODELING; TOPIC MODELING ALGORITHMS;

EID: 84938053135     PISSN: None     EISSN: 21508097     Source Type: Journal    
DOI: 10.14778/2735508.2735519     Document Type: Conference Paper
Times cited : (170)

References (28)
  • 1
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules
    • R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules. In Proc. VLDB, volume 1215, pages 487-499, 1994.
    • (1994) Proc. VLDB , vol.1215 , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 2
    • 80052688589 scopus 로고    scopus 로고
    • Visualizing topics with multi-word expressions
    • arXiv preprint arXiv:0907.1013
    • D. M. Blei and J. D. Lafferty. Visualizing topics with multi-word expressions. arXiv preprint arXiv:0907.1013, 2009.
    • (2009)
    • Blei, D.M.1    Lafferty, J.D.2
  • 3
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. JRML, 3:993-1022, 2003.
    • (2003) JRML , vol.3 , pp. 993-1022
    • Blei, D.M.1    Ng, A.Y.2    Jordan, M.I.3
  • 4
    • 84863381525 scopus 로고    scopus 로고
    • Reading tea leaves: How humans interpret topic models
    • J. Chang, J. Boyd-Graber, C. Wang, S. Gerrish, and D. M. Blei. Reading tea leaves: How humans interpret topic models. In NIPS, pages 288-296, 2009.
    • (2009) NIPS , pp. 288-296
    • Chang, J.1    Boyd-Graber, J.2    Wang, C.3    Gerrish, S.4    Blei, D.M.5
  • 6
    • 84959911781 scopus 로고    scopus 로고
    • Automatic construction and ranking of topical keyphrases on collections of short documents
    • M. Danilevsky, C. Wang, N. Desai, J. Guo, and J. Han. Automatic construction and ranking of topical keyphrases on collections of short documents. In SDM, 2014.
    • (2014) SDM
    • Danilevsky, M.1    Wang, C.2    Desai, N.3    Guo, J.4    Han, J.5
  • 7
    • 72949124564 scopus 로고    scopus 로고
    • Gibbs sampling in the generative model of latent dirichlet allocation
    • T. Griffths. Gibbs sampling in the generative model of latent dirichlet allocation. Standford University, 518(11):1-3, 2002.
    • (2002) Standford University , vol.518 , Issue.11 , pp. 1-3
    • Griffths, T.1
  • 8
    • 78049522900 scopus 로고    scopus 로고
    • Hidden topic markov models
    • AISTAT
    • A. Gruber, Y. Weiss, and M. Rosen-Zvi. Hidden topic markov models. In Proc. AISTAT, pages 163-170, 2007.
    • (2007) Proc. , pp. 163-170
    • Gruber, A.1    Weiss, Y.2    Rosen-Zvi, M.3
  • 9
    • 0037796798 scopus 로고
    • Lexis as a linguistic level
    • M. A. Halliday et al. Lexis as a linguistic level. In memory of JR Firth, pages 148-162, 1966.
    • (1966) memory of JR Firth , pp. 148-162
    • Halliday, M.A.1
  • 11
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • ACM
    • J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In ACM SIGMOD Record, volume 29, pages 1-12. ACM, 2000.
    • (2000) ACM SIGMOD Record , vol.29 , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 12
    • 80052752148 scopus 로고    scopus 로고
    • Conundrums in unsupervised keyphrase extraction: making sense of the state-of-the-art
    • K. S. Hasan and V. Ng. Conundrums in unsupervised keyphrase extraction: making sense of the state-of-the-art. In Proc. ACL, pages 365-373, 2010.
    • (2010) Proc. ACL , pp. 365-373
    • Hasan, K.S.1    Ng, V.2
  • 13
    • 79952432020 scopus 로고    scopus 로고
    • Aspect and sentiment unification model for online review analysis
    • ACM
    • Y. Jo and A. H. Oh. Aspect and sentiment unification model for online review analysis. In Proc. WSDM, pages 815-824. ACM, 2011.
    • (2011) Proc. WSDM , pp. 815-824
    • Jo, Y.1    Oh, A.H.2
  • 16
    • 84874480358 scopus 로고    scopus 로고
    • A phrase-discovering topic model usinghierarchical pitman-yor processes
    • R. V. Lindsey, W. P. Headden III, and M. J. Stipicevic. A phrase-discovering topic model usinghierarchical pitman-yor processes. In Proc. EMNLP-CoNLL, pages 214-222, 2012.
    • (2012) Proc. EMNLP-CoNLL , pp. 214-222
    • Lindsey, R.V.1    Headden III, W.P.2    Stipicevic, M.J.3
  • 17
    • 77956054799 scopus 로고    scopus 로고
    • Clustering to find exemplar terms for keyphrase extraction
    • ACL
    • Z. Liu, P. Li, Y. Zheng, and M. Sun. Clustering to find exemplar terms for keyphrase extraction. In Proc. EMNLP, pages 257-266. ACL, 2009.
    • (2009) Proc. EMNLP , pp. 257-266
    • Liu, Z.1    Li, P.2    Zheng, Y.3    Sun, M.4
  • 18
    • 58149308167 scopus 로고    scopus 로고
    • Structural learning of chain graphs via decomposition
    • Z. Ma, X. Xie, and Z. Geng. Structural learning of chain graphs via decomposition. JMLR, 9:2847, 2008.
    • (2008) JMLR , vol.9 , pp. 2847
    • Ma, Z.1    Xie, X.2    Geng, Z.3
  • 20
    • 36849026729 scopus 로고    scopus 로고
    • Automatic labeling of multinomial topic models
    • ACM
    • Q. Mei, X. Shen, and C. Zhai. Automatic labeling of multinomial topic models. In Proc. SIGKDD, pages 490-499. ACM, 2007.
    • (2007) Proc. SIGKDD , pp. 490-499
    • Mei, Q.1    Shen, X.2    Zhai, C.3
  • 21
    • 85114317854 scopus 로고    scopus 로고
    • Textrank: Bringing order into texts
    • Barcelona, Spain
    • R. Mihalcea and P. Tarau. Textrank: Bringing order into texts. In Proceedings of EMNLP, page 275. Barcelona, Spain, 2004.
    • (2004) Proceedings of EMNLP , pp. 275
    • Mihalcea, R.1    Tarau, P.2
  • 25
    • 85054349386 scopus 로고    scopus 로고
    • Is knowledge-free induction of multiword unit dictionary headwords a solved problem
    • P. Schone and D. Jurafsky. Is knowledge-free induction of multiword unit dictionary headwords a solved problem. In Proc. EMNLP, pages 100-108, 2001.
    • (2001) Proc. EMNLP , pp. 100-108
    • Schone, P.1    Jurafsky, D.2
  • 26
    • 34250736841 scopus 로고    scopus 로고
    • Topic modeling: beyond bag-of-words
    • ACM
    • H. M. Wallach. Topic modeling: beyond bag-of-words. In Proc. ICML, pages 977-984. ACM, 2006.
    • (2006) Proc. ICML , pp. 977-984
    • Wallach, H.M.1
  • 27
    • 49749087162 scopus 로고    scopus 로고
    • Topical n-grams:Phrase and topic discovery, with an application to information retrieval
    • IEEE
    • X. Wang, A. McCallum, and X. Wei. Topical n-grams:Phrase and topic discovery, with an application to information retrieval. In ICDM, pages 697-702. IEEE, 2007.
    • (2007) ICDM , pp. 697-702
    • Wang, X.1    McCallum, A.2    Wei, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.