-
1
-
-
0000276924
-
Proximite et dualite dans un espace hilbertien
-
J. Moreau, “Proximite et dualite dans un espace hilbertien,” Bulletin de la S.M.F., vol. 93, pp. 273-299, 1965.
-
(1965)
Bulletin De La S.M.F
, vol.93
, pp. 273-299
-
-
Moreau, J.1
-
3
-
-
34249837486
-
On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators
-
J. Eckstein and D. Bertsekas, “On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators,” Math. Program., vol. 55, pp. 293-318, 1992.
-
(1992)
Math. Program
, vol.55
, pp. 293-318
-
-
Eckstein, J.1
Bertsekas, D.2
-
4
-
-
0000345334
-
Splitting algorithms for the sum of two nonlinear operators
-
P. Lions and B. Mercier, “Splitting algorithms for the sum of two nonlinear operators,” SIAM J. on Numerical Analysis, vol. 16, pp. 964-979, 1992.
-
(1992)
SIAM J. On Numerical Analysis
, vol.16
, pp. 964-979
-
-
Lions, P.1
Mercier, B.2
-
5
-
-
7044231546
-
-
I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Comm. Pure Appl. Math., vol. 57, no. 11, pp. 1413-1457, 2004. [Online]. Available: http://dx.doi.org/10.1002/cpa.20042
-
(2004)
An Iterative Thresholding Algorithm for Linear Inverse Problems with a Sparsity Constraint
, vol.57
, Issue.11
, pp. 1413-1457
-
-
Daubechies, I.1
Defrise, M.2
De Mol, C.3
-
6
-
-
30844438177
-
-
P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward splitting,” Multiscale Model. Simul., vol. 4, no. 4, pp. 1168-1200 (electronic), 2005. [Online]. Available: http://dx.doi.org/10.1137/050626090
-
(2005)
Signal Recovery by Proximal Forward-Backward Splitting
, vol.4
, Issue.4
, pp. 1168-1200
-
-
Combettes, P.L.1
Wajs, V.R.2
-
7
-
-
0016565825
-
-
J. C. Picard and H. D. Ratliff, “Minimum cuts and related problems,” Networks, vol. 5, no. 4, pp. 357-370, 1975.
-
(1975)
Networks
, vol.5
, Issue.4
, pp. 357-370
-
-
Picard, J.C.1
Ratliff, H.D.2
-
8
-
-
0000111836
-
-
D. M. Greig, B. T. Porteous, and A. H. Seheult, “Exact maximum a posteriori estimation for binary images,” J. R. Statist. Soc. B, vol. 51, pp. 271-279, 1989.
-
(1989)
Exact Maximum a Posteriori Estimation for Binary Images
, vol.51
, pp. 271-279
-
-
Greig, D.M.1
Porteous, B.T.2
Seheult, A.H.3
-
9
-
-
0024610615
-
-
C. Gallo, M. D. Grigoriadis, and R. E. Tarjan, “A fast parametric maximum flow algorithm and applications,” SIAM J. Comput., vol. 18, no. 1, pp. 30-55, 1989.
-
(1989)
A Fast Parametric Maximum Flow Algorithm and Applications
, vol.18
, Issue.1
, pp. 30-55
-
-
Gallo, C.1
Grigoriadis, M.D.2
Tarjan, R.E.3
-
10
-
-
0017014095
-
-
M. Eisner and D. Severance, “Mathematical techniques for efficient record segmentation in large shared databases,” J. Assoc. Comput. Mach., vol. 23, no. 4, pp. 619-635, 1976.
-
(1976)
Mathematical Techniques for Efficient Record Segmentation in Large Shared Databases
, vol.23
, Issue.4
, pp. 619-635
-
-
Eisner, M.1
Severance, D.2
-
11
-
-
0008821575
-
-
(electronic)
-
D. S. Hochbaum, “An efficient algorithm for image segmentation, Markov random fields and related problems,” J. ACM, vol. 48, no. 4, pp. 686-701 (electronic), 2001.
-
(2001)
An Efficient Algorithm for Image Segmentation, Markov Random Fields and Related Problems
, vol.48
, Issue.4
, pp. 686-701
-
-
Hochbaum, D.S.1
-
12
-
-
0035509961
-
-
Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 11, pp. 1222-1239, 2001.
-
(2001)
Fast Approximate Energy Minimization via Graph Cuts
, vol.23
, Issue.11
, pp. 1222-1239
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
13
-
-
33845482689
-
-
December
-
J. Darbon and M. Sigelle, “Image restoration with discrete constrained Total Variation part I: Fast and exact optimization,” J. Math. Imaging Vis., vol. 26, no. 3, pp. 261-276, December 2006.
-
(2006)
Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization
, vol.26
, Issue.3
, pp. 261-276
-
-
Darbon, J.1
Sigelle, M.2
-
14
-
-
33845478943
-
-
December
-
J. Darbon and M. Sigelle, “Image restoration with discrete constrained Total Variation part II: Levelable functions, convex priors and non-convex cases,” Journal of Mathematical Imaging and Vision, vol. 26, no. 3, pp. 277-291, December 2006.
-
(2006)
Image Restoration with Discrete Constrained Total Variation Part II: Levelable Functions, Convex Priors and Non-Convex Cases
, vol.26
, Issue.3
, pp. 277-291
-
-
Darbon, J.1
Sigelle, M.2
-
15
-
-
67349189437
-
-
A. Chambolle and J. Darbon, “On total variation minimization and surface evolution using parametric maximum flows,” International Journal of Computer Vision, vol. 84, no. 3, pp. 288-307, 2009.
-
(2009)
On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows
, vol.84
, Issue.3
, pp. 288-307
-
-
Chambolle, A.1
Darbon, J.2
-
17
-
-
33646554193
-
Total variation minimization and a class of binary MRF models
-
ser. Lecture Notes in Computer Science
-
A. Chambolle, “Total variation minimization and a class of binary MRF models,” in Energy Minimization Methods in Computer Vision and Pattern Recognition, ser. Lecture Notes in Computer Science, 2005, pp. 136-152.
-
(2005)
Energy Minimization Methods in Computer Vision and Pattern Recognition
, pp. 136-152
-
-
Chambolle, A.1
-
18
-
-
0142039762
-
Exact Optimization for Markov Random Fields with Convex priors
-
C. Ishikawa, “Exact optimization for Markov random fields with convex priors,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1333-1336, 2003.
-
(2003)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.25
, Issue.10
, pp. 1333-1336
-
-
Ishikawa, C.1
-
19
-
-
79957451716
-
-
A. Chambolle, S. Levine, and B. Lucier, “An upwind finite-difference method for total variation-based image smoothing,” SIAM Journal on Imaging Sciences, vol. 4, no. 1, pp. 277-299, 2011. [Online]. Available: http://link.aip.org/link/?SII/4/277/1
-
(2011)
An Upwind Finite-Difference Method for Total Variation-Based Image Smoothing
, vol.4
, Issue.1
, pp. 277-299
-
-
Chambolle, A.1
Levine, S.2
Lucier, B.3
-
22
-
-
0002716901
-
-
Berlin: Springer
-
L. Lovasz, “Submodular functions and convexity,” in Mathematical programming: the state of the art (Bonn, 1982). Berlin: Springer, 1983, pp. 235-257.
-
(1983)
Submodular Functions and Convexity
, pp. 235-257
-
-
Lovasz, L.1
-
25
-
-
79959697960
-
Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected graphs
-
P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S.-H. Teng, “Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected graphs,” CoRR, vol. abs/1010.2921, 2010.
-
(2010)
CoRR
-
-
Christiano, P.1
Kelner, J.A.2
Madry, A.3
Spielman, D.A.4
Teng, S.-H.5
-
26
-
-
4344598245
-
-
Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1124-1137, September 2004.
-
(2004)
An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision
, vol.26
, Issue.9
, pp. 1124-1137
-
-
Boykov, Y.1
Kolmogorov, V.2
-
27
-
-
0002471366
-
-
New York, NY, USA: ACM Press
-
A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum flow problem,” in STOC’86: Proc. of the eighteenth annual ACM Symposium on Theory of Computing. New York, NY, USA: ACM Press, 1986, pp. 136-146.
-
(1986)
A New Approach to the Maximum Flow Problem
, pp. 136-146
-
-
Goldberg, A.V.1
Tarjan, R.E.2
|