-
1
-
-
85014561619
-
A fast iterative shrinkage-threshold algorithm for linear inverse problems
-
A. Beck and M. Teboulle. A fast iterative shrinkage-threshold algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1): 183-202, 2009.
-
(2009)
SIAM Journal on Imaging Sciences
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
2
-
-
84892868336
-
On the convergence of block coordinate descent type methods
-
A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type methods. SIAM Journal on Optimization, 13(4): 2037-2060, 2013.
-
(2013)
SIAM Journal on Optimization
, vol.13
, Issue.4
, pp. 2037-2060
-
-
Beck, A.1
Tetruashvili, L.2
-
3
-
-
48849104146
-
Coordinate descent method for large-scale l2-loss linear support vector machines
-
K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large-scale l2-loss linear support vector machines. Journal of Machine Learning Research, 9: 1369-1398, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1369-1398
-
-
Chang, K.-W.1
Hsieh, C.-J.2
Lin, C.-J.3
-
5
-
-
84903607170
-
-
Manuscript, arXiv: 1310.6957
-
M. Hong, X. Wang, M. Razaviyayn, and Z. Q. Luo. Iteration complexity analysis of block coordinate descent methods. Manuscript, arXiv: 1310.6957, 2013.
-
(2013)
Iteration Complexity Analysis of Block Coordinate Descent Methods
-
-
Hong, M.1
Wang, X.2
Razaviyayn, M.3
Luo, Z.Q.4
-
6
-
-
56449086680
-
A dual coordinate descent method for large-scale linear SVM
-
C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S.-S. Keerthi, and S. Sundararajan. A dual coordinate descent method for large-scale linear svm. In Proceedings of the 25th International Conference on Machine Learning (ICML), pages 408-415, 2008.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning (ICML)
, pp. 408-415
-
-
Hsieh, C.-J.1
Chang, K.-W.2
Lin, C.-J.3
Keerthi, S.-S.4
Sundararajan, S.5
-
7
-
-
84898963415
-
Accelerating stochastic gradient descent using predictive variance reduction
-
R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In Advances in Neural Information Processing Systems 26, pages 315-323. 2013.
-
(2013)
Advances in Neural Information Processing Systems
, vol.26
, pp. 315-323
-
-
Johnson, R.1
Zhang, T.2
-
9
-
-
84937832340
-
An accelerated proximal coordinate gradient method and its application to regularized empirical risk minimization
-
(arXiv: 1407.1296)
-
Q. Lin, Z. Lu, and L. Xiao. An accelerated proximal coordinate gradient method and its application to regularized empirical risk minimization. Technical Report MSR-TR-2014-94, Microsoft Research, 2014. (arXiv: 1407.1296).
-
(2014)
Technical Report MSR-TR-2014-94, Microsoft Research
-
-
Lin, Q.1
Lu, Z.2
Xiao, L.3
-
10
-
-
84992120616
-
On the complexity analysis of randomized block-coordinate descent methods
-
Accepted by Series A (arXiv: 1305.4723)
-
Z. Lu and L. Xiao. On the complexity analysis of randomized block-coordinate descent methods. Accepted by Mathematical Programming, Series A, 2014. (arXiv: 1305.4723).
-
(2014)
Mathematical Programming
-
-
Lu, Z.1
Xiao, L.2
-
11
-
-
0026678659
-
On the convergence of the coordinate descent method for convex differentiable minimization
-
Z. Q. Luo and P. Tseng. On the convergence of the coordinate descent method for convex differentiable minimization. Journal of Optimization Theory & Applications, 72(1): 7-35, 2002.
-
(2002)
Journal of Optimization Theory & Applications
, vol.72
, Issue.1
, pp. 7-35
-
-
Luo, Z.Q.1
Tseng, P.2
-
13
-
-
84865692149
-
Efficiency of coordinate descent methods on huge-scale optimization problems
-
Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM Journal on Optimization, 22(2): 341-362, 2012.
-
(2012)
SIAM Journal on Optimization
, vol.22
, Issue.2
, pp. 341-362
-
-
Nesterov, Y.1
-
14
-
-
84897116612
-
Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
-
P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Mathematical Programming, 144(1): 1-38, 2014.
-
(2014)
Mathematical Programming
, vol.144
, Issue.1
, pp. 1-38
-
-
Richtárik, P.1
Takáč, M.2
-
15
-
-
84877725219
-
A stochastic gradient method with an exponential convergence rate for finite training sets
-
N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for finite training sets. In Advances in Neural Information Processing Systems 25, pages 2672-2680. 2012.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 2672-2680
-
-
Le Roux, N.1
Schmidt, M.2
Bach, F.3
-
16
-
-
84877774282
-
On the non-asymptotic convergence of cyclic coordinate descent methods
-
A. Saha and A. Tewari. On the non-asymptotic convergence of cyclic coordinate descent methods. SIAM Jorunal on Optimization, 23: 576-601, 2013.
-
(2013)
SIAM Jorunal on Optimization
, vol.23
, pp. 576-601
-
-
Saha, A.1
Tewari, A.2
-
17
-
-
84899025130
-
Minimizing finite sums with the stochastic average gradient
-
Paris, France
-
M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient. Technical Report HAL 00860051, INRIA, Paris, France, 2013.
-
(2013)
Technical Report HAL 00860051, INRIA
-
-
Schmidt, M.1
Le Roux, N.2
Bach, F.3
-
19
-
-
84875134236
-
Stochastic dual coordinate ascent methods for regularized loss minimization
-
S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss minimization. Journal of Machine Learning Research, 14: 567-599, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 567-599
-
-
Shalev-Shwartz, S.1
Zhang, T.2
-
21
-
-
85139379613
-
Convergence of a block coordinate descent method for nondifferentiable minimization
-
P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of Optimization Theory and Applications, 140: 513-535, 2001.
-
(2001)
Journal of Optimization Theory and Applications
, vol.140
, pp. 513-535
-
-
Tseng, P.1
-
23
-
-
84923932076
-
A proximal stochastic gradient method with progressive variance reduction
-
(arXiv: 1403.4699)
-
L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction. Technical Report MSR-TR-2014-38, Microsoft Research, 2014. (arXiv: 1403.4699).
-
(2014)
Technical Report MSR-TR-2014-38, Microsoft Research
-
-
Xiao, L.1
Zhang, T.2
|