메뉴 건너뛰기




Volumn 1, Issue January, 2014, Pages 810-818

Exploiting easy data in online optimization

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; BENCHMARKING; INFORMATION SCIENCE; SOCIAL NETWORKING (ONLINE);

EID: 84937901652     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (61)

References (25)
  • 2
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the multiarmed bandit problem
    • Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002a). Finite-time analysis of the multiarmed bandit problem. Mach. Learn., 47(2-3):235-256.
    • (2002) Mach. Learn. , vol.47 , Issue.2-3 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 4
    • 85162021730 scopus 로고    scopus 로고
    • Adaptive online gradient descent
    • Platt, J. C., Koller, D., Singer, Y., and Roweis, S. T., editors Curran Associates December 3-6
    • Bartlett, P. L., Hazan, E., and Rakhlin, A. (2008). Adaptive online gradient descent. In Platt, J. C., Koller, D., Singer, Y., and Roweis, S. T., editors, Advances in Neural Information Processing Systems 20, pages 65-72. Curran Associates. (December 3-6, 2007).
    • (2007) Advances in Neural Information Processing Systems , vol.20 , pp. 65-72
    • Bartlett, P.L.1    Hazan, E.2    Rakhlin, A.3
  • 5
    • 84874065869 scopus 로고    scopus 로고
    • The best of both worlds: Stochastic and adversarial bandits
    • Bubeck, S. and Slivkins, A. (2012). The best of both worlds: Stochastic and adversarial bandits. In COLT, pages 42.1-42.23.
    • (2012) COLT , pp. 421-4223
    • Bubeck, S.1    Slivkins, A.2
  • 7
    • 33847624608 scopus 로고    scopus 로고
    • Improved second-order bounds for prediction with expert advice
    • Cesa-Bianchi, N., Mansour, Y., and Stoltz, G. (2007). Improved second-order bounds for prediction with expert advice. Machine Learning, 66(2-3):321-352.
    • (2007) Machine Learning , vol.66 , Issue.2-3 , pp. 321-352
    • Cesa-Bianchi, N.1    Mansour, Y.2    Stoltz, G.3
  • 9
  • 10
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55:119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 12
    • 80054819291 scopus 로고    scopus 로고
    • Regret minimization for online buffering problems using the weighted majority algorithm
    • Geulen, S., Vöcking, B., and Winkler, M. (2010). Regret minimization for online buffering problems using the weighted majority algorithm. In COLT, pages 132-143.
    • (2010) COLT , pp. 132-143
    • Geulen, S.1    Vöcking, B.2    Winkler, M.3
  • 15
    • 84937920282 scopus 로고    scopus 로고
    • Near-optimal rates for limited-delay universal lossy source coding
    • Submitted to
    • György, A. and Neu, G. (2013). Near-optimal rates for limited-delay universal lossy source coding. Submitted to the IEEE Transactions on Information Theory.
    • (2013) The IEEE Transactions on Information Theory
    • György, A.1    Neu, G.2
  • 16
    • 0001976283 scopus 로고
    • Approximation to bayes risk in repeated play
    • Hannan, J. (1957). Approximation to Bayes risk in repeated play. Contributions to the theory of games, 3:97-139.
    • (1957) Contributions to the Theory of Games , vol.3 , pp. 97-139
    • Hannan, J.1
  • 17
    • 35348918820 scopus 로고    scopus 로고
    • Logarithmic regret algorithms for online convex optimization
    • Hazan, E., Agarwal, A., and Kale, S. (2007). Logarithmic regret algorithms for online convex optimization. Machine Learning, 69:169-192.
    • (2007) Machine Learning , vol.69 , pp. 169-192
    • Hazan, E.1    Agarwal, A.2    Kale, S.3
  • 18
    • 0032137328 scopus 로고    scopus 로고
    • Tracking the best expert
    • Herbster, M. and Warmuth, M. (1998). Tracking the best expert. Machine Learning, 32:151-178.
    • (1998) Machine Learning , vol.32 , pp. 151-178
    • Herbster, M.1    Warmuth, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.