-
1
-
-
46249088758
-
Consistency of the group lasso and multiple kernel learning
-
June
-
F. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research, 9: 1179-1225, June 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1179-1225
-
-
Bach, F.1
-
3
-
-
31744440684
-
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
-
E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Information Theory, 52: 489-509, 2006.
-
(2006)
IEEE Trans. Information Theory
, vol.52
, pp. 489-509
-
-
Candes, E.J.1
Romberg, J.2
Tao, T.3
-
5
-
-
33747727601
-
Wavelet based statistical signal processing using hidden markov models
-
M. S. Crouse, R. D. Nowak, and R. G. Baraniuk. Wavelet based statistical signal processing using hidden markov models. Transactions on Signal Processing, 46 (4): 886-902, 1998.
-
(1998)
Transactions on Signal Processing
, vol.46
, Issue.4
, pp. 886-902
-
-
Crouse, M.S.1
Nowak, R.D.2
Baraniuk, R.G.3
-
8
-
-
0002542403
-
On Milman's inequality and random subspaces which escape through a mesh in Rn. Geometric aspects of functional analysis
-
Y. Gordon. On Milman's inequality and random subspaces which escape through a mesh in Rn. Geometric aspects of functional analysis, Isr. Semin., 1317: 84-106, 1986-87.
-
(1986)
Isr. Semin.
, vol.1317
, pp. 84-106
-
-
Gordon, Y.1
-
9
-
-
77955997530
-
-
Technical report, arXiv: 0901.2962. Preprint, May
-
J. Huang and T Zhang. The benefit of group sparsity. Technical report, arXiv: 0901.2962. Preprint available at http://arxiv.org/pdf/0903.2962v2, May 2009.
-
(2009)
The Benefit of Group Sparsity
-
-
Huang, J.1
Zhang, T.2
-
13
-
-
80051713547
-
-
Technical report, arXiv: 1009.3139. submitted
-
R. Jenatton, J. Mairal, G. Obozinski, , and F. Bach. Proximal methods for hierarchical sparse coding. Technical report, arXiv: 1009.3139. submitted, 2010.
-
(2010)
Proximal Methods for Hierarchical Sparse Coding
-
-
Jenatton, R.1
Mairal, J.2
Obozinski, G.3
Bach, F.4
-
14
-
-
38849196916
-
Reconstruction and subgaussian operators in asymptotic geometric analysis
-
S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann. Reconstruction and subgaussian operators in asymptotic geometric analysis. Geometric and Functional Analysis, 17 (4): 1248-1282, 2006.
-
(2006)
Geometric and Functional Analysis
, vol.17
, Issue.4
, pp. 1248-1282
-
-
Mendelson, S.1
Pajor, A.2
Tomczak-Jaegermann, N.3
-
15
-
-
61549103040
-
Blind multi-band signal reconstruction: Compressed sensing for analog signals
-
March
-
M. Mishali and Y. Eldar. Blind multi-band signal reconstruction: compressed sensing for analog signals. IEEE Trans. Signal Processing, 57 (30): 993-1009, March 2009.
-
(2009)
IEEE Trans. Signal Processing
, vol.57
, Issue.30
, pp. 993-1009
-
-
Mishali, M.1
Eldar, Y.2
-
17
-
-
62749175137
-
Cosamp: Iterative signal recovery from incomplete and inaccurate samples
-
D. Needell and J. Tropp. Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal., 26: 301-321, 2008.
-
(2008)
Appl. Comput. Harmon. Anal.
, vol.26
, pp. 301-321
-
-
Needell, D.1
Tropp, J.2
-
21
-
-
84871621373
-
Bayesian tree structured image modeling using wavelet domain hidden markov models
-
March
-
J. K Romberg, H. Choi, and R. G Baraniuk. Bayesian tree structured image modeling using wavelet domain hidden markov models. Transactions on Image Processing, March 2000.
-
(2000)
Transactions on Image Processing
-
-
Romberg, J.K.1
Choi, H.2
Baraniuk, R.G.3
-
22
-
-
27344435774
-
Gene set enrichment analysis: A knowledge-based approach for interpreting genomewide expression proles
-
A. Subramanian et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genomewide expression proles. National Academy of Sciences, 102: 1554515550, 2005.
-
(2005)
National Academy of Sciences
, vol.102
, pp. 1554515550
-
-
Subramanian, A.1
-
25
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the royal statistical society. Series B, 68: 49-67, 2006.
-
(2006)
Journal of the Royal Statistical Society. Series B
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
|