메뉴 건너뛰기




Volumn 168, Issue , 2015, Pages 1111-1120

Combined H∞ and passivity state estimation of memristive neural networks with random gain fluctuations

Author keywords

Different memductance function; Memristor; Non fragile control; Random fluctuation; Recurrent neural network

Indexed keywords

ASYMPTOTIC STABILITY; LINEAR MATRIX INEQUALITIES; LYAPUNOV FUNCTIONS; RECURRENT NEURAL NETWORKS; STATE ESTIMATION; TIME VARYING NETWORKS;

EID: 84937816725     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.05.012     Document Type: Article
Times cited : (66)

References (30)
  • 1
    • 82255186604 scopus 로고    scopus 로고
    • Switched exponential state estimation of neural networks based on passivity theory
    • Ahn C.K. Switched exponential state estimation of neural networks based on passivity theory. Nonlinear Dyn. 2012, 67:573-586.
    • (2012) Nonlinear Dyn. , vol.67 , pp. 573-586
    • Ahn, C.K.1
  • 2
    • 84880918179 scopus 로고    scopus 로고
    • State estimation for switched discrete-time stochastic BAM neural networks with time varying delay
    • Arunkumar A., Sakthivel R., Mathiyalagan K., Marshal Anthoni S. State estimation for switched discrete-time stochastic BAM neural networks with time varying delay. Nonlinear Dyn. 2013, 73:1565-1585.
    • (2013) Nonlinear Dyn. , vol.73 , pp. 1565-1585
    • Arunkumar, A.1    Sakthivel, R.2    Mathiyalagan, K.3    Marshal Anthoni, S.4
  • 3
    • 84884899669 scopus 로고    scopus 로고
    • Non-fragile control and synchronization of a new fractional order chaotic system
    • Asheghan M.M., Delshad S.S., Beheshti M.T.H., Tavazoei M.S. Non-fragile control and synchronization of a new fractional order chaotic system. Appl. Math. Comput. 2013, 222:712-721.
    • (2013) Appl. Math. Comput. , vol.222 , pp. 712-721
    • Asheghan, M.M.1    Delshad, S.S.2    Beheshti, M.T.H.3    Tavazoei, M.S.4
  • 4
    • 79960561029 scopus 로고    scopus 로고
    • Delay-interval-dependent robust stability results for uncertain stochastic systems with Markovian jumping parameters
    • Balasubramaniam P., Krishnasamy R., Rakkiyappan R. Delay-interval-dependent robust stability results for uncertain stochastic systems with Markovian jumping parameters. Nonlinear Anal.: Hybrid Syst. 2011, 5:681-691.
    • (2011) Nonlinear Anal.: Hybrid Syst. , vol.5 , pp. 681-691
    • Balasubramaniam, P.1    Krishnasamy, R.2    Rakkiyappan, R.3
  • 5
    • 82355169632 scopus 로고    scopus 로고
    • Stochastic state estimation for neural networks with distributed delays and Markovian jump
    • Chen Y., Zheng W.X. Stochastic state estimation for neural networks with distributed delays and Markovian jump. Neural Netw. 2012, 25:14-20.
    • (2012) Neural Netw. , vol.25 , pp. 14-20
    • Chen, Y.1    Zheng, W.X.2
  • 6
    • 0015127532 scopus 로고
    • Memristor-the missing circuit element
    • Chua L.O. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18:507-519.
    • (1971) IEEE Trans. Circuit Theory , vol.18 , pp. 507-519
    • Chua, L.O.1
  • 7
    • 0348155953 scopus 로고    scopus 로고
    • ∞ vehicle suspension control using genetic algorithm
    • ∞ vehicle suspension control using genetic algorithm. Eng. Appl. Artif. Intell. 2003, 16:667-680.
    • (2003) Eng. Appl. Artif. Intell. , vol.16 , pp. 667-680
    • Du, H.1    Lam, J.2    Sze, K.Y.3
  • 8
    • 84875418372 scopus 로고    scopus 로고
    • Non-fragile synchronization of neural networks with time-varying delay and randomly occurring controller gain fluctuation
    • Fang M., Park J.H. Non-fragile synchronization of neural networks with time-varying delay and randomly occurring controller gain fluctuation. Appl. Math. Comput. 2013, 219:8009-8017.
    • (2013) Appl. Math. Comput. , vol.219 , pp. 8009-8017
    • Fang, M.1    Park, J.H.2
  • 9
    • 84890453298 scopus 로고    scopus 로고
    • Robust reliability method for non-fragile guaranteed cost control of parametric uncertain systems
    • Guo S. Robust reliability method for non-fragile guaranteed cost control of parametric uncertain systems. Syst. Control Lett. 2014, 64:27-35.
    • (2014) Syst. Control Lett. , vol.64 , pp. 27-35
    • Guo, S.1
  • 10
    • 84897837625 scopus 로고    scopus 로고
    • Attractivity analysis of memristor-based cellular neural networks with time-varying delays
    • Guo Z., Wang J., Yan Z. Attractivity analysis of memristor-based cellular neural networks with time-varying delays. IEEE Trans. Neural Netw. 2014, 25:704-717.
    • (2014) IEEE Trans. Neural Netw. , vol.25 , pp. 704-717
    • Guo, Z.1    Wang, J.2    Yan, Z.3
  • 11
    • 0019020679 scopus 로고
    • Dissipative dynamical systems: basic input-output and state properties
    • Hill D.J., Moylan P.J. Dissipative dynamical systems: basic input-output and state properties. J. Frankl. Inst. 1980, 309:327-357.
    • (1980) J. Frankl. Inst. , vol.309 , pp. 327-357
    • Hill, D.J.1    Moylan, P.J.2
  • 12
    • 61549090587 scopus 로고    scopus 로고
    • Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jumping parameters
    • Li H., Chen B., Zhou Q., Qian W. Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jumping parameters. IEEE Trans. Syst. Man Cybern.-B 2009, 39:94-102.
    • (2009) IEEE Trans. Syst. Man Cybern.-B , vol.39 , pp. 94-102
    • Li, H.1    Chen, B.2    Zhou, Q.3    Qian, W.4
  • 13
    • 61849172400 scopus 로고    scopus 로고
    • Mean square exponential stability of stochastic fuzzy Hopfield neural networks with discrete and distributed time-varying delays
    • Li H., Chen B., Lin C., Zhou Q. Mean square exponential stability of stochastic fuzzy Hopfield neural networks with discrete and distributed time-varying delays. Neurocomputing 2009, 72:2017-2023.
    • (2009) Neurocomputing , vol.72 , pp. 2017-2023
    • Li, H.1    Chen, B.2    Lin, C.3    Zhou, Q.4
  • 14
    • 84899919527 scopus 로고    scopus 로고
    • Novel stability criteria for recurrent neural networks with time-varying delay
    • M.D. Ji, Y. He, C.K. Zhang, M. Wu, Novel stability criteria for recurrent neural networks with time-varying delay 138 (2014) 383-391.
    • (2014) , vol.138 , pp. 383-391
    • Ji, M.D.1    He, Y.2    Zhang, C.K.3    Wu, M.4
  • 15
    • 84855772398 scopus 로고    scopus 로고
    • A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications
    • Kim K.H., Gaba S., Wheeler D. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 2011, 12:389-395.
    • (2011) Nano Lett. , vol.12 , pp. 389-395
    • Kim, K.H.1    Gaba, S.2    Wheeler, D.3
  • 17
    • 79953207030 scopus 로고    scopus 로고
    • Robust state estimation for neural networks with discontinuous activations
    • Liu X., Cao J. Robust state estimation for neural networks with discontinuous activations. IEEE Trans. Syst. Man. Cybern. B: Cybern. 2010, 40:1425-1437.
    • (2010) IEEE Trans. Syst. Man. Cybern. B: Cybern. , vol.40 , pp. 1425-1437
    • Liu, X.1    Cao, J.2
  • 19
    • 84888644127 scopus 로고    scopus 로고
    • Robust state estimation for discrete-time genetic regulatory networks with randomly occurring uncertainties
    • Sakthivel R., Mathiyalagan K., Lakshmanan S., Park J.H. Robust state estimation for discrete-time genetic regulatory networks with randomly occurring uncertainties. Nonlinear Dyn. 2013, 74:1297-1315.
    • (2013) Nonlinear Dyn. , vol.74 , pp. 1297-1315
    • Sakthivel, R.1    Mathiyalagan, K.2    Lakshmanan, S.3    Park, J.H.4
  • 21
    • 84902462545 scopus 로고    scopus 로고
    • Non-fragile state observer design for neural networks with Markovian jumping parameters and time-delays
    • Vembarasan V., Balasubramaniam P., Chan C.S. Non-fragile state observer design for neural networks with Markovian jumping parameters and time-delays. Nonlinear Anal.: Hybrid Syst. 2014, 14:61-73.
    • (2014) Nonlinear Anal.: Hybrid Syst. , vol.14 , pp. 61-73
    • Vembarasan, V.1    Balasubramaniam, P.2    Chan, C.S.3
  • 22
    • 84865338637 scopus 로고    scopus 로고
    • Exponential stability analysis of memristor-based recurrent neural networks with time-varying delays
    • Wen S., Zeng Z., Huang T. Exponential stability analysis of memristor-based recurrent neural networks with time-varying delays. Neuro Comput. 2012, 97:233-240.
    • (2012) Neuro Comput. , vol.97 , pp. 233-240
    • Wen, S.1    Zeng, Z.2    Huang, T.3
  • 23
    • 84880710802 scopus 로고    scopus 로고
    • Passivity analysis of memristor-based recurrent neural networks with time-varying delays
    • Wen S., Zeng Z., Huang T., Chen Y. Passivity analysis of memristor-based recurrent neural networks with time-varying delays. J. Frankl. Inst. 2013, 350:2354-2370.
    • (2013) J. Frankl. Inst. , vol.350 , pp. 2354-2370
    • Wen, S.1    Zeng, Z.2    Huang, T.3    Chen, Y.4
  • 24
    • 80055064591 scopus 로고    scopus 로고
    • Synchronization control of a class of memristor-based recurrent neural networks
    • Wu A., Wen S., Zeng Z. Synchronization control of a class of memristor-based recurrent neural networks. Inf. Sci. 2012, 183:106-116.
    • (2012) Inf. Sci. , vol.183 , pp. 106-116
    • Wu, A.1    Wen, S.2    Zeng, Z.3
  • 25
    • 84884919926 scopus 로고    scopus 로고
    • Dissipativity analysis for discrete-time stochastic neural networks with time-varying delays
    • Wu Z., Shi P., Su H., Chu J. Dissipativity analysis for discrete-time stochastic neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24:345-355.
    • (2013) IEEE Trans. Neural Netw. Learn. Syst. , vol.24 , pp. 345-355
    • Wu, Z.1    Shi, P.2    Su, H.3    Chu, J.4
  • 26
    • 84874585747 scopus 로고    scopus 로고
    • ∞ and passive filtering for singular systems with time delays
    • ∞ and passive filtering for singular systems with time delays. Signal Process. 2013, 93:1705-1711.
    • (2013) Signal Process. , vol.93 , pp. 1705-1711
    • Wu, Z.1    Park, J.H.2    Su, H.3    Song, B.4    Chu, J.5
  • 27
    • 79953026411 scopus 로고    scopus 로고
    • Dynamic behaviors of a class of memristor-based Hopfield networks
    • Wu A., Zhang J., Zeng Z. Dynamic behaviors of a class of memristor-based Hopfield networks. Phys. Lett. A 2011, 375:1661-1665.
    • (2011) Phys. Lett. A , vol.375 , pp. 1661-1665
    • Wu, A.1    Zhang, J.2    Zeng, Z.3
  • 28
    • 80052919219 scopus 로고    scopus 로고
    • Exponential synchronization of memristor-based recurrent neural networks with time delays
    • Wu A., Zeng Z., Zhu X., Zhang J. Exponential synchronization of memristor-based recurrent neural networks with time delays. Neurocomputing 2011, 74:3043-3050.
    • (2011) Neurocomputing , vol.74 , pp. 3043-3050
    • Wu, A.1    Zeng, Z.2    Zhu, X.3    Zhang, J.4
  • 30
    • 79751528954 scopus 로고    scopus 로고
    • Less conservative results of state estimation for delayed neural networks with fewer LMI variables
    • Zheng C., Ma M., Wang Z. Less conservative results of state estimation for delayed neural networks with fewer LMI variables. Neurocomputing 2011, 74:974-982.
    • (2011) Neurocomputing , vol.74 , pp. 974-982
    • Zheng, C.1    Ma, M.2    Wang, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.