메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1069-1078

Concept-based short text classification and ranking

Author keywords

MSN channel; Query recommendation; Short text classification; Taxonomy knowledge

Indexed keywords

KNOWLEDGE MANAGEMENT; TAXONOMIES;

EID: 84937563372     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2661829.2662067     Document Type: Conference Paper
Times cited : (114)

References (43)
  • 2
    • 77950961712 scopus 로고    scopus 로고
    • An optimization framework for query recommendation
    • ACM
    • A. Anagnostopoulos, L. Becchetti, C. Castillo, and A. Gionis. An optimization framework for query recommendation. In WSDM, pages 161-170. ACM, 2010.
    • (2010) WSDM , pp. 161-170
    • Anagnostopoulos, A.1    Becchetti, L.2    Castillo, C.3    Gionis, A.4
  • 3
    • 35048823972 scopus 로고    scopus 로고
    • Query recommendation using query logs in search engines
    • Springer
    • R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query recommendation using query logs in search engines. In EDBT, pages 588-596. Springer, 2005.
    • (2005) EDBT , pp. 588-596
    • Baeza-Yates, R.1    Hurtado, C.2    Mendoza, M.3
  • 5
    • 84874258712 scopus 로고    scopus 로고
    • From machu-picchu to rafting the urubamba river: Anticipating information needs via the entity-query graph
    • ACM
    • I. Bordino, G. De Francisci Morales, I. Weber, and F. Bonchi. From machu-picchu to rafting the urubamba river: anticipating information needs via the entity-query graph. In WSDM, pages 275-284. ACM, 2013.
    • (2013) WSDM , pp. 275-284
    • Bordino, I.1    De Francisci Morales, G.2    Weber, I.3    Bonchi, F.4
  • 6
    • 79955702502 scopus 로고    scopus 로고
    • Libsvm: A library for support vector machines
    • C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. TIST, 2(3):27, 2011.
    • (2011) TIST , vol.2 , Issue.3 , pp. 27
    • Chang, C.-C.1    Lin, C.-J.2
  • 7
    • 84866630031 scopus 로고    scopus 로고
    • Short text classification improved by learning multi-granularity topics
    • AAAI Press
    • M. Chen, X. Jin, and D. Shen. Short text classification improved by learning multi-granularity topics. In IJCAI, pages 1776-1781. AAAI Press, 2011.
    • (2011) IJCAI , pp. 1776-1781
    • Chen, M.1    Jin, X.2    Shen, D.3
  • 8
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 36448966738 scopus 로고    scopus 로고
    • Random walks on the click graph
    • ACM
    • N. Craswell and M. Szummer. Random walks on the click graph. In SIGIR, pages 239-246. ACM, 2007.
    • (2007) SIGIR , pp. 239-246
    • Craswell, N.1    Szummer, M.2
  • 10
    • 84873415282 scopus 로고    scopus 로고
    • Query representation and understanding workshop
    • W. B. Croft, M. Bendersky, H. Li, and G. Xu. Query representation and understanding workshop. In SIGIR Forum, volume 44, pages 48-53, 2010.
    • (2010) SIGIR Forum , vol.44 , pp. 48-53
    • Croft, W.B.1    Bendersky, M.2    Li, H.3    Xu, G.4
  • 12
    • 84866605634 scopus 로고    scopus 로고
    • Diversity by proportionality: An election-based approach to search result diversification
    • ACM
    • V. Dang and W. B. Croft. Diversity by proportionality: an election-based approach to search result diversification. In SIGIR, pages 65-74. ACM, 2012.
    • (2012) SIGIR , pp. 65-74
    • Dang, V.1    Croft, W.B.2
  • 13
    • 84883084244 scopus 로고    scopus 로고
    • Task-aware query recommendation
    • ACM
    • H. Feild and J. Allan. Task-aware query recommendation. In SIGIR, pages 83-92. ACM, 2013.
    • (2013) SIGIR , pp. 83-92
    • Feild, H.1    Allan, J.2
  • 14
    • 36348939917 scopus 로고    scopus 로고
    • Overcoming the brittleness bottleneck using wikipedia: Enhancing text categorization with encyclopedic knowledge
    • E. Gabrilovich and S. Markovitch. Overcoming the brittleness bottleneck using wikipedia: Enhancing text categorization with encyclopedic knowledge. In AAAI, 2006.
    • (2006) AAAI
    • Gabrilovich, E.1    Markovitch, S.2
  • 15
    • 84880915872 scopus 로고    scopus 로고
    • Computing semantic relatedness using wikipedia-based explicit semantic analysis
    • E. Gabrilovich and S. Markovitch. Computing semantic relatedness using wikipedia-based explicit semantic analysis. In IJCAI, volume 7, pages 1606-1611, 2007.
    • (2007) IJCAI , vol.7 , pp. 1606-1611
    • Gabrilovich, E.1    Markovitch, S.2
  • 16
    • 84866599687 scopus 로고    scopus 로고
    • Combining implicit and explicit topic representations for result diversification
    • ACM
    • J. He, V. Hollink, and A. de Vries. Combining implicit and explicit topic representations for result diversification. In SIGIR, pages 851-860. ACM, 2012.
    • (2012) SIGIR , pp. 851-860
    • He, J.1    Hollink, V.2    De Vries, A.3
  • 17
    • 74549114844 scopus 로고    scopus 로고
    • Exploiting internal and external semantics for the clustering of short texts using world knowledge
    • ACM
    • X. Hu, N. Sun, C. Zhang, and T.-S. Chua. Exploiting internal and external semantics for the clustering of short texts using world knowledge. In CIKM, pages 919-928. ACM, 2009.
    • (2009) CIKM , pp. 919-928
    • Hu, X.1    Sun, N.2    Zhang, C.3    Chua, T.-S.4
  • 19
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs generative classifiers: A comparison of logistic regression and naive bayes
    • A. Jordan. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. NIPS, 14:841, 2002.
    • (2002) NIPS , vol.14 , pp. 841
    • Jordan, A.1
  • 20
    • 0033645894 scopus 로고    scopus 로고
    • Text filtering by boosting naive bayes classifiers
    • Y.-H. Kim, S.-Y. Hahn, and B.-T. Zhang. Text filtering by boosting naive bayes classifiers. In SIGIR, 2000.
    • (2000) SIGIR
    • Kim, Y.-H.1    Hahn, S.-Y.2    Zhang, B.-T.3
  • 21
    • 84881339771 scopus 로고    scopus 로고
    • Attribute extraction and scoring: A probabilistic approach
    • IEEE
    • T. Lee, Z. Wang, H. Wang, and S.-w. Hwang. Attribute extraction and scoring: A probabilistic approach. In ICDE, pages 194-205. IEEE, 2013.
    • (2013) ICDE , pp. 194-205
    • Lee, T.1    Wang, Z.2    Wang, H.3    Hwang, S.-W.4
  • 22
    • 84889560995 scopus 로고    scopus 로고
    • Computing term similarity by large probabilistic isa knowledge
    • ACM
    • P. Li, H. Wang, K. Q. Zhu, Z. Wang, and X. Wu. Computing term similarity by large probabilistic isa knowledge. In CIKM, pages 1401-1410. ACM, 2013.
    • (2013) CIKM , pp. 1401-1410
    • Li, P.1    Wang, H.2    Zhu, K.Q.3    Wang, Z.4    Wu, X.5
  • 23
    • 84871042641 scopus 로고    scopus 로고
    • Dqr: A probabilistic approach to diversified query recommendation
    • ACM
    • R. Li, B. Kao, B. Bi, R. Cheng, and E. Lo. Dqr: a probabilistic approach to diversified query recommendation. In CIKM, pages 16-25. ACM, 2012.
    • (2012) CIKM , pp. 16-25
    • Li, R.1    Kao, B.2    Bi, B.3    Cheng, R.4    Lo, E.5
  • 24
    • 57549108344 scopus 로고    scopus 로고
    • Learning query intent from regularized click graphs
    • X. Li, Y.-Y. Wang, and A. Acero. Learning query intent from regularized click graphs. In SIGIR, 2008.
    • (2008) SIGIR
    • Li, X.1    Wang, Y.-Y.2    Acero, A.3
  • 25
    • 33746369754 scopus 로고    scopus 로고
    • Sentence similarity based on semantic nets and corpus statistics
    • Y. Li, D. McLean, Z. A. Bandar, J. D. O'shea, and K. Crockett. Sentence similarity based on semantic nets and corpus statistics. TKDE, 18(8):1138-1150, 2006.
    • (2006) TKDE , vol.18 , Issue.8 , pp. 1138-1150
    • Li, Y.1    McLean, D.2    Bandar, Z.A.3    O'shea, J.D.4    Crockett, K.5
  • 26
    • 0030651099 scopus 로고    scopus 로고
    • Feature selection, perceptron learning, and a usability case study for text categorization
    • ACM
    • H. T. Ng, W. B. Goh, and K. L. Low. Feature selection, perceptron learning, and a usability case study for text categorization. In SIGIR. ACM, 1997.
    • (1997) SIGIR
    • Ng, H.T.1    Goh, W.B.2    Low, K.L.3
  • 27
    • 57349117605 scopus 로고    scopus 로고
    • Learning to classify short and sparse text & web with hidden topics from large-scale data collections
    • X.-H. Phan, L.-M. Nguyen, and S. Horiguchi. Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In WWW, 2008.
    • (2008) WWW
    • Phan, X.-H.1    Nguyen, L.-M.2    Horiguchi, S.3
  • 28
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan. Induction of decision trees. Machine learning, pages 81-106, 1986.
    • (1986) Machine Learning , pp. 81-106
    • Quinlan, J.R.1
  • 29
    • 85037361697 scopus 로고    scopus 로고
    • Using bag-of-concepts to improve the performance of support vector machines in text categorization
    • ACL
    • M. Sahlgren and R. Cöster. Using bag-of-concepts to improve the performance of support vector machines in text categorization. In COLING, page 487. ACL, 2004.
    • (2004) COLING , pp. 487
    • Sahlgren, M.1    Cöster, R.2
  • 31
    • 33749646196 scopus 로고    scopus 로고
    • Q2c@ust: Our winning solution to query classification in kddcup 2005
    • D. Shen, R. Pan, J.-T. Sun, J. J. Pan, K. Wu, J. Yin, and Q. Yang. Q2c@ust: our winning solution to query classification in kddcup 2005. SIGKDD, 7(2):100-110, 2005.
    • (2005) SIGKDD , vol.7 , Issue.2 , pp. 100-110
    • Shen, D.1    Pan, R.2    Sun, J.-T.3    Pan, J.J.4    Wu, K.5    Yin, J.6    Yang, Q.7
  • 32
    • 33749595945 scopus 로고    scopus 로고
    • Query enrichment for web-query classification
    • D. Shen, R. Pan, J.-T. Sun, J. J. Pan, K. Wu, J. Yin, and Q. Yang. Query enrichment for web-query classification. TOIS, 24(3):320-352, 2006.
    • (2006) TOIS , vol.24 , Issue.3 , pp. 320-352
    • Shen, D.1    Pan, R.2    Sun, J.-T.3    Pan, J.J.4    Wu, K.5    Yin, J.6    Yang, Q.7
  • 33
    • 33750331970 scopus 로고    scopus 로고
    • Building bridges for web query classification
    • D. Shen, J.-T. Sun, Q. Yang, and Z. Chen. Building bridges for web query classification. In SIGIR, 2006.
    • (2006) SIGIR
    • Shen, D.1    Sun, J.-T.2    Yang, Q.3    Chen, Z.4
  • 34
    • 0033279606 scopus 로고    scopus 로고
    • A general language model for information retrieval
    • ACM
    • F. Song and W. B. Croft. A general language model for information retrieval. In CIKM, pages 316-321. ACM, 1999.
    • (1999) CIKM , pp. 316-321
    • Song, F.1    Croft, W.B.2
  • 35
    • 84862654033 scopus 로고    scopus 로고
    • Short text conceptualization using a probabilistic knowledgebase
    • AAAI Press
    • Y. Song, H. Wang, Z. Wang, H. Li, and W. Chen. Short text conceptualization using a probabilistic knowledgebase. In IJCAI, pages 2330-2336. AAAI Press, 2011.
    • (2011) IJCAI , pp. 2330-2336
    • Song, Y.1    Wang, H.2    Wang, Z.3    Li, H.4    Chen, W.5
  • 36
    • 35148867982 scopus 로고    scopus 로고
    • Yago: A core of semantic knowledge
    • ACM
    • F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge. In WWW, pages 697-706. ACM, 2007.
    • (2007) WWW , pp. 697-706
    • Suchanek, F.M.1    Kasneci, G.2    Weikum, G.3
  • 37
    • 84866633289 scopus 로고    scopus 로고
    • Short text classification using very few words
    • ACM
    • A. Sun. Short text classification using very few words. In SIGIR, pages 1145-1146. ACM, 2012.
    • (2012) SIGIR , pp. 1145-1146
    • Sun, A.1
  • 38
    • 83055186849 scopus 로고    scopus 로고
    • Improving recommendation for long-tail queries via templates
    • ACM
    • I. Szpektor, A. Gionis, and Y. Maarek. Improving recommendation for long-tail queries via templates. In WWW, pages 47-56. ACM, 2011.
    • (2011) WWW , pp. 47-56
    • Szpektor, I.1    Gionis, A.2    Maarek, Y.3
  • 39
    • 84901791600 scopus 로고    scopus 로고
    • Head, modifier, and constraint detection in short texts
    • Z. Wang, H. Wang, and Z. Hu. Head, modifier, and constraint detection in short texts. In ICDE, pages 280-291, 2014.
    • (2014) ICDE , pp. 280-291
    • Wang, Z.1    Wang, H.2    Hu, Z.3
  • 40
    • 84862653732 scopus 로고    scopus 로고
    • Probase: A probabilistic taxonomy for text understanding
    • ACM
    • W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A probabilistic taxonomy for text understanding. In SIGMOD, pages 481-492. ACM, 2012.
    • (2012) SIGMOD , pp. 481-492
    • Wu, W.1    Li, H.2    Wang, H.3    Zhu, K.Q.4
  • 41
    • 84868691102 scopus 로고    scopus 로고
    • Wikiwalk: Random walks on wikipedia for semantic relatedness
    • ACL
    • E. Yeh, D. Ramage, C. D. Manning, E. Agirre, and A. Soroa. Wikiwalk: random walks on wikipedia for semantic relatedness. In ACL Workshop, pages 41-49. ACL, 2009.
    • (2009) ACL Workshop , pp. 41-49
    • Yeh, E.1    Ramage, D.2    Manning, C.D.3    Agirre, E.4    Soroa, A.5
  • 42
    • 0034788435 scopus 로고    scopus 로고
    • A study of smoothing methods for language models applied to ad hoc information retrieval
    • ACM
    • C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to ad hoc information retrieval. In SIGIR, pages 334-342. ACM, 2001.
    • (2001) SIGIR , pp. 334-342
    • Zhai, C.1    Lafferty, J.2
  • 43
    • 67649855128 scopus 로고    scopus 로고
    • Mining search engine query logs for query recommendation
    • Z. Zhang and O. Nasraoui. Mining search engine query logs for query recommendation. In WWW, pages 1039-1040, 2006.
    • (2006) WWW , pp. 1039-1040
    • Zhang, Z.1    Nasraoui, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.