메뉴 건너뛰기




Volumn 2353, Issue , 2002, Pages 685-699

A tale of two classifiers: SNoW vs. SVM in visual recognition

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION THEORY; COMPUTER VISION; LEARNING ALGORITHMS; LEARNING SYSTEMS; OBJECT DETECTION; OBJECT RECOGNITION; SNOW;

EID: 84937539670     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-47979-1_46     Document Type: Conference Paper
Times cited : (9)

References (39)
  • 1
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25:821–837, 1964.
    • (1964) Automation and Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.1    Braverman, E.2    Rozonoer, L.3
  • 2
    • 0033208584 scopus 로고    scopus 로고
    • A computational model for visual selection
    • Y. Amit and D. Geman. A computational model for visual selection. Neural Computation, 11(7):1691–1715, 1999.
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1691-1715
    • Amit, Y.1    Geman, D.2
  • 3
    • 27644433782 scopus 로고    scopus 로고
    • Efficient learning of linear perceptron
    • T. K. Leen, T. G. Dietterich, and V. Tresp, editors
    • S. Ben-David and H. U. Simon. Efficient learning of linear perceptron. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 189–195. MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems 13 , pp. 189-195
    • Ben-David, S.1    Simon, H.U.2
  • 4
    • 0007563290 scopus 로고
    • Learning boolean functions in an infinite attribute space
    • A. Blum. Learning boolean functions in an infinite attribute space. Machine Learning, 9(4):373–386, 1992.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 373-386
    • Blum, A.1
  • 10
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron
    • Y. Freund and R. Schapire. Large margin classification using the perceptron. Machine Learning, 37(3):277–296, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Schapire, R.2
  • 13
    • 0031375503 scopus 로고    scopus 로고
    • The Perceptron algorithm vs. Winnow: Linear vs. logarithmic mistake bound when few input variables are relevant
    • J. Kivinen, M. K. Warmuth, and P. Auer. The Perceptron algorithm vs. Winnow: linear vs. logarithmic mistake bound when few input variables are relevant. Artificial Intelligence, 1-2:325–343, 1997.
    • (1997) Artificial Intelligence , vol.1 , Issue.2 , pp. 325-343
    • Kivinen, J.1    Warmuth, M.K.2    Auer, P.3
  • 15
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285–318, 1988.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 17
    • 0034132682 scopus 로고    scopus 로고
    • Minimizing binding errors using learned conjunctive features
    • B. W. Mel and J. Fiser. Minimizing binding errors using learned conjunctive features. Neural Computation, 12:247–278, 2000.
    • (2000) Neural Computation , vol.12 , pp. 247-278
    • Mel, B.W.1    Fiser, J.2
  • 21
    • 0000209334 scopus 로고    scopus 로고
    • Local feature analysis: A general statistical theory for object
    • P. Penev and J. Atick. Local feature analysis: A general statistical theory for object representation. Network: Computation in Neural Systems, 7(3):477–500, 1996.
    • (1996) Network: Computation in Neural Systems , vol.7 , Issue.3 , pp. 477-500
    • Penev, P.1    Atick, A.J.2
  • 22
    • 0025037991 scopus 로고
    • A network that learns to recognize 3D objects
    • T. Poggio and S. Edelman. A network that learns to recognize 3D objects. Nature, 343:263–266, 1990.
    • (1990) Nature , vol.343 , pp. 263-266
    • Poggio, T.1    Edelman, S.2
  • 25
    • 11144273669 scopus 로고
    • The Perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt. The Perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65:386–407, 1958.
    • (1958) Psychological Review , vol.65 , pp. 386-407
    • Rosenblatt, F.1
  • 32
    • 84899005618 scopus 로고    scopus 로고
    • Rate-coded restricted Boltzmann machines for face recognition
    • T. K. Leen, T. G. Dietterich, and V. Tresp, editors, MIT Press
    • Y. W. Teh and G. E. Hinton. Rate-coded restricted Boltzmann machines for face recognition. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 908–914. MIT Press, 2001.
    • (2001) Advances in NEural Information Processing Systems 13 , pp. 908-914
    • Teh, Y.W.1    Hinton, G.E.2
  • 35
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, Nov. 1984.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 38
    • 0000320045 scopus 로고    scopus 로고
    • A SNoW-based face detector
    • S. A. Solla, T. K. Leen, and K.-R. Mu¨ller, editors, MIT Press
    • M.-H. Yang, D. Roth, and N. Ahuja. A SNoW-based face detector. In S. A. Solla, T. K. Leen, and K.-R. Mu¨ller, editors, Advances of Neural Information Processing Systems, pages 855–861. MIT Press, 2000.
    • (2000) Advances of Neural Information Processing Systems , pp. 855-861
    • Yang, M.-H.1    Roth, D.2    Ahuja, N.3
  • 39
    • 0006557529 scopus 로고    scopus 로고
    • Some theoretical results concerning the convergence of compositions of regularized linear functions
    • S. A. Solla, T. K. Leen, and K.-R. Mu¨ller, editors, MIT Press
    • T. Zhang. Some theoretical results concerning the convergence of compositions of regularized linear functions. In S. A. Solla, T. K. Leen, and K.-R. Mu¨ller, editors, Advances in Neural Information Processing Systems 12, pages 370–376. MIT Press, 2000.
    • (2000) Advances in Neural Information Processing Systems 12 , pp. 370-376
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.