메뉴 건너뛰기




Volumn 85, Issue , 2015, Pages 52-61

The performance of corporate financial distress prediction models with features selection guided by domain knowledge and data mining approaches

Author keywords

Data mining; Domain knowledge; Features selection; Financial distress prediction

Indexed keywords

FEATURE EXTRACTION; FINANCE; FORECASTING; GENETIC ALGORITHMS; PREDICTIVE ANALYTICS;

EID: 84937523591     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2015.04.017     Document Type: Article
Times cited : (72)

References (33)
  • 1
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • E.I. Altman Financial ratios, discriminant analysis and the prediction of corporate bankruptcy J. Finance 23 1968 589 609
    • (1968) J. Finance , vol.23 , pp. 589-609
    • Altman, E.I.1
  • 2
    • 0034562990 scopus 로고    scopus 로고
    • Comparative analysis of artificial neural network models: Application in bankruptcy prediction
    • C. Charalambous, A. Charitou, and F. Kaourou Comparative analysis of artificial neural network models: application in bankruptcy prediction Ann. Oper. Res. 99 2000 403 425
    • (2000) Ann. Oper. Res. , vol.99 , pp. 403-425
    • Charalambous, C.1    Charitou, A.2    Kaourou, F.3
  • 3
    • 0028444978 scopus 로고
    • Bankruptcy prediction using neural networks
    • R. Wilson, and R. Sharda Bankruptcy prediction using neural networks Decis. Support Syst. 11 1994 545 557
    • (1994) Decis. Support Syst. , vol.11 , pp. 545-557
    • Wilson, R.1    Sharda, R.2
  • 4
    • 77956385089 scopus 로고    scopus 로고
    • Business failure prediction using decision trees
    • A. Gepp, K. Kumar, and S. Bhattacharya Business failure prediction using decision trees J. Forecast. 29 2009 536 555
    • (2009) J. Forecast. , vol.29 , pp. 536-555
    • Gepp, A.1    Kumar, K.2    Bhattacharya, S.3
  • 5
    • 9244259665 scopus 로고    scopus 로고
    • An application of support vector machines in bankruptcy prediction model
    • K.S. Shin, T.S. Lee, and H.J. Kim An application of support vector machines in bankruptcy prediction model Expert Syst. Appl. 28 2005 127 135
    • (2005) Expert Syst. Appl. , vol.28 , pp. 127-135
    • Shin, K.S.1    Lee, T.S.2    Kim, H.J.3
  • 6
    • 84870059898 scopus 로고    scopus 로고
    • An extended fuzzy measure on competitiveness correlation based on WCY 2011
    • Y.C. Ko, H. Fujita, and G.H. Tzeng An extended fuzzy measure on competitiveness correlation based on WCY 2011 Knowl.-Based Syst. 37 2013 86 93
    • (2013) Knowl.-Based Syst. , vol.37 , pp. 86-93
    • Ko, Y.C.1    Fujita, H.2    Tzeng, G.H.3
  • 7
    • 80051475044 scopus 로고    scopus 로고
    • A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method
    • H.L. Chen, B. Yang, G. Wang, J. Liu, X. Xu, S.J. Wang, and D.Y. Liu A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method Knowl.-Based Syst. 24 2011 1348 1359
    • (2011) Knowl.-Based Syst. , vol.24 , pp. 1348-1359
    • Chen, H.L.1    Yang, B.2    Wang, G.3    Liu, J.4    Xu, X.5    Wang, S.J.6    Liu, D.Y.7
  • 8
    • 80053091389 scopus 로고    scopus 로고
    • Hybrid genetic programming-based search algorithms for enterprise bankruptcy prediction
    • M. Divsalar, M.R. Javid, A.H. Gandomi, J.B. Soofi, and M.V. Mahmood Hybrid genetic programming-based search algorithms for enterprise bankruptcy prediction Appl. Artif. Intell. 25 2011 669 692
    • (2011) Appl. Artif. Intell. , vol.25 , pp. 669-692
    • Divsalar, M.1    Javid, M.R.2    Gandomi, A.H.3    Soofi, J.B.4    Mahmood, M.V.5
  • 9
    • 77951880059 scopus 로고    scopus 로고
    • Hybrid and ensemble-based soft computing techniques in bankruptcy prediction: A survey, soft computing - A fusion of foundations
    • A. Verikas, Z. Kalsyte, M. Bacauskiene, and A. Gelzinis Hybrid and ensemble-based soft computing techniques in bankruptcy prediction: a survey, soft computing - a fusion of foundations Methodol. Appl. 14 2010 995 1010
    • (2010) Methodol. Appl. , vol.14 , pp. 995-1010
    • Verikas, A.1    Kalsyte, Z.2    Bacauskiene, M.3    Gelzinis, A.4
  • 10
    • 71349086635 scopus 로고    scopus 로고
    • A hybrid approach based on the combination of variable selection using decision trees and case-based reasoning using the Mahalanobis distance: For bankruptcy prediction
    • S. Cho, H. Hong, and B.-C. Ha A hybrid approach based on the combination of variable selection using decision trees and case-based reasoning using the Mahalanobis distance: for bankruptcy prediction Expert Syst. Appl. 37 2010 3482 3488
    • (2010) Expert Syst. Appl. , vol.37 , pp. 3482-3488
    • Cho, S.1    Hong, H.2    Ha, B.-C.3
  • 13
    • 0008104389 scopus 로고    scopus 로고
    • Forecasting bankruptcy more accurately: A simple hazard model
    • T. Shumway Forecasting bankruptcy more accurately: a simple hazard model J. Bus. 74 2001 101 124
    • (2001) J. Bus. , vol.74 , pp. 101-124
    • Shumway, T.1
  • 14
    • 0001953906 scopus 로고
    • Methodological issues related to the estimation of financial distress prediction models
    • M. Zmijewski Methodological issues related to the estimation of financial distress prediction models J. Account. Res. 22 1984 59 82
    • (1984) J. Account. Res. , vol.22 , pp. 59-82
    • Zmijewski, M.1
  • 15
    • 33846314346 scopus 로고    scopus 로고
    • Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review
    • K.P. Ravi, and V. Ravi Bankruptcy prediction in banks and firms via statistical and intelligent techniques - a review Eur. J. Oper. Res. 180 2007 1 28
    • (2007) Eur. J. Oper. Res. , vol.180 , pp. 1-28
    • Ravi, K.P.1    Ravi, V.2
  • 16
    • 59349101361 scopus 로고    scopus 로고
    • Feature selection in bankruptcy prediction
    • C.F. Tsai Feature selection in bankruptcy prediction Knowl.-Based Syst. 22 2009 120 127
    • (2009) Knowl.-Based Syst. , vol.22 , pp. 120-127
    • Tsai, C.F.1
  • 17
    • 77952537146 scopus 로고    scopus 로고
    • Predicting bankruptcy using neural networks and other classification methods: The influence of variable selection techniques on model accuracy
    • P. du Jardin Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy Neurocomputing 73 2010 2047 2060
    • (2010) Neurocomputing , vol.73 , pp. 2047-2060
    • Du Jardin, P.1
  • 18
  • 19
    • 84866729677 scopus 로고    scopus 로고
    • Empirical models based on features ranking techniques for corporate financial distress prediction
    • L. Zhou, K.K. Lai, and J. Yen Empirical models based on features ranking techniques for corporate financial distress prediction Comput. Math. Appl. 64 2012 2484 2496
    • (2012) Comput. Math. Appl. , vol.64 , pp. 2484-2496
    • Zhou, L.1    Lai, K.K.2    Yen, J.3
  • 22
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon, and A. Elisseeff An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 27
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • H. Zou, and T. Hastie Regularization and variable selection via the elastic net J. Roy. Stat. Soc. Ser. B 67 2005 301 320
    • (2005) J. Roy. Stat. Soc. Ser. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 29
    • 84937521579 scopus 로고    scopus 로고
    • GTA, China Stock Market Financial Database - Financial Indices
    • GTA, China Stock Market Financial Database - Financial Indices, Technical Report, 2015.
    • (2015) Technical Report
  • 30
    • 84873725663 scopus 로고    scopus 로고
    • Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods
    • L. Zhou Performance of corporate bankruptcy prediction models on imbalanced dataset: the effect of sampling methods Knowl.-Based Syst. 41 2013 16 25
    • (2013) Knowl.-Based Syst. , vol.41 , pp. 16-25
    • Zhou, L.1
  • 33
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data set
    • J. Demšar Statistical comparisons of classifiers over multiple data set J. Mach. Learn. Res. 2006 1 30
    • (2006) J. Mach. Learn. Res. , pp. 1-30
    • Demšar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.