-
3
-
-
84905990058
-
4 with controlled porosity: Inverse micelle synthesis and high-performance catalytic CO oxidation at −60 °C
-
4 with controlled porosity: Inverse micelle synthesis and high-performance catalytic CO oxidation at −60 °C. Chem. Mater.2014, 26, 4629–4639.
-
(2014)
Chem. Mater.
, vol.26
, pp. 4629-4639
-
-
Song, W.Q.1
Poyraz, A.S.2
Meng, Y.T.3
Ren, Z.4
Chen, S.Y.5
Suib, S.L.6
-
4
-
-
84866379086
-
4 nanoparticles for low-temperature CO oxidation
-
4 nanoparticles for low-temperature CO oxidation. J. Phys. Chem. C2012, 116, 19405–19412.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 19405-19412
-
-
Pandey, A.D.1
Jia, C.J.2
Schmidt, W.3
Leoni, M.4
Schwickardi, M.5
Schuth, F.6
Weidenthaler, C.7
-
5
-
-
79960595488
-
2 nanocomposite: A very active catalyst for CO oxidation with unusual catalytic behavior
-
2 nanocomposite: A very active catalyst for CO oxidation with unusual catalytic behavior. J. Am. Chem. Soc.2011, 133, 11279–11288.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 11279-11288
-
-
Jia, C.J.1
Schwickardi, M.2
Weidenthaler, C.3
Schmidt, W.4
Korhonen, S.5
Weckhuysen, B.M.6
Schuth, F.7
-
6
-
-
84857557128
-
2 nanospheres in hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage
-
2 nanospheres in hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. J. Mater. Chem.2012, 22, 5065–5071.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 5065-5071
-
-
Lu, Z.H.1
Jiang, H.L.2
Yadav, M.3
Aranishi, K.4
Xu, Q.5
-
7
-
-
33845728603
-
High-temperature-stable catalysts by hollow sphere encapsulation
-
Arnal, P. M.; Comotti, M.; Schüth, F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed.2006, 45, 8224–8227.
-
(2006)
Angew. Chem. Int. Ed.
, vol.45
, pp. 8224-8227
-
-
Arnal, P.M.1
Comotti, M.2
Schüth, F.3
-
8
-
-
57349101024
-
Core-satellite nanocomposite catalysts protected by a porous silica shell: Controllable reactivity, high stability, and magnetic recyclability
-
Ge, J. P.; Zhang, Q.; Zhang, T. R.; Yin, Y. D. Core-satellite nanocomposite catalysts protected by a porous silica shell: Controllable reactivity, high stability, and magnetic recyclability. Angew. Chem. Int. Ed.2008, 47, 8924–8928.
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 8924-8928
-
-
Ge, J.P.1
Zhang, Q.2
Zhang, T.R.3
Yin, Y.D.4
-
9
-
-
84904731787
-
Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis
-
Zhang, T. T.; Zhao, H. Y.; He, S. N.; Liu, K.; Liu, H. Y.; Yin, Y. D.; Gao, C. B. Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis. Acs. Nano2014, 8, 7297–7304.
-
(2014)
Acs. Nano
, vol.8
, pp. 7297-7304
-
-
Zhang, T.T.1
Zhao, H.Y.2
He, S.N.3
Liu, K.4
Liu, H.Y.5
Yin, Y.D.6
Gao, C.B.7
-
11
-
-
77950801054
-
2 hetero-nanocomposites with high catalytic activity
-
2 hetero-nanocomposites with high catalytic activity. J. Am. Chem. Soc.2010, 132, 4998–4999.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 4998-4999
-
-
Zhou, H.P.1
Wu, H.S.2
Shen, J.3
Yin, A.X.4
Sun, L.D.5
Yan, C.H.6
-
12
-
-
84862653728
-
2 core-shell nanospheres with enhanced catalytic performance due to strengthening of the interfacial interactions
-
2 core-shell nanospheres with enhanced catalytic performance due to strengthening of the interfacial interactions. J. Mater. Chem.2012, 22, 10480–10487.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 10480-10487
-
-
Zhang, J.1
Li, L.P.2
Huang, X.S.3
Li, G.S.4
-
13
-
-
78651484168
-
Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability
-
Lee, I.; Zhang, Q.; Ge, J. P.; Yin, Y. D.; Zaera, F. Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability. Nano Res.2011, 4, 115–123.
-
(2011)
Nano Res.
, vol.4
, pp. 115-123
-
-
Lee, I.1
Zhang, Q.2
Ge, J.P.3
Yin, Y.D.4
Zaera, F.5
-
14
-
-
84890119497
-
One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity
-
Chen, J. C.; Zhang, R. Y.; Han, L.; Tu, B.; Zhao, D. Y. One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity. Nano Res.2013, 6, 871–879.
-
(2013)
Nano Res.
, vol.6
, pp. 871-879
-
-
Chen, J.C.1
Zhang, R.Y.2
Han, L.3
Tu, B.4
Zhao, D.Y.5
-
15
-
-
84877759091
-
2 as a robust nanocatalyst achieved by a hollow core-shell strategy
-
2 as a robust nanocatalyst achieved by a hollow core-shell strategy. Chem. Mater.2013, 25, 1979–1988.
-
(2013)
Chem. Mater.
, vol.25
, pp. 1979-1988
-
-
Zhang, N.1
Xu, Y.J.2
-
16
-
-
78651515150
-
2 nanostructures
-
2 nanostructures. Nano Res.2011, 4, 61–71.
-
(2011)
Nano Res.
, vol.4
, pp. 61-71
-
-
Lin, F.1
Hoang, D.T.2
Tsung, C.K.3
Huang, W.Y.4
Lo, S.H.Y.5
Wood, J.B.6
Wang, H.7
Tang, J.Y.8
Yang, P.D.9
-
17
-
-
84863164869
-
2 nanoplates with a hexagonal structure and their catalytic applications in highly selective hydrogenation of substituted nitroaromatics
-
2 nanoplates with a hexagonal structure and their catalytic applications in highly selective hydrogenation of substituted nitroaromatics. Chem. Commun.2012, 48, 2391–2393.
-
(2012)
Chem. Commun.
, vol.48
, pp. 2391-2393
-
-
Zhang, Y.1
Hou, F.2
Tan, Y.W.3
-
18
-
-
80051724236
-
2-δ during CO oxidation
-
2-δ during CO oxidation. J. Am. Chem. Soc.2011, 133, 12952–12955.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 12952-12955
-
-
Lee, Y.J.1
He, G.H.2
Akey, A.J.3
Si, R.4
Flytzani-Stephanopoulos, M.5
Herman, I.P.6
-
19
-
-
70450186718
-
Direct evidence for the interfacial oxidation of CO with hydroxyls catalyzed by Pt/oxide nanocatalysts
-
Xu, L. S; Ma, Y. S.; Zhang, Y. L.; Jiang, Z. Q.; Huang, W. X. Direct evidence for the interfacial oxidation of CO with hydroxyls catalyzed by Pt/oxide nanocatalysts. J. Am. Chem. Soc.2009, 131, 16366–16367.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 16366-16367
-
-
Xu, L.S.1
Ma, Y.S.2
Zhang, Y.L.3
Jiang, Z.Q.4
Huang, W.X.5
-
20
-
-
84887998918
-
2 nanobelt heterostructures
-
2 nanobelt heterostructures. Small2013, 9, 3864–3872.
-
(2013)
Small
, vol.9
, pp. 3864-3872
-
-
Tian, J.1
Sang, Y.H.2
Zhao, Z.H.3
Zhou, W.J.4
Wang, D.Z.5
Kang, X.L.6
Liu, H.7
Wang, J.Y.8
Chen, S.W.9
Cai, H.Q.10
-
21
-
-
77956502620
-
A lamellar ceria structure with encapsulated platinum nanoparticles
-
Mak, A. C.; Yu, C. L.; Yu, J. C.; Zhang, Z. D.; Ho, C. A lamellar ceria structure with encapsulated platinum nanoparticles. Nano Res.2008, 1, 474–482.
-
(2008)
Nano Res.
, vol.1
, pp. 474-482
-
-
Mak, A.C.1
Yu, C.L.2
Yu, J.C.3
Zhang, Z.D.4
Ho, C.5
-
22
-
-
84886552679
-
2 multicore@shell self-assembled nanospheres: Clean synthesis, structure optimization, and catalytic applications
-
2 multicore@shell self-assembled nanospheres: Clean synthesis, structure optimization, and catalytic applications. J. Am. Chem. Soc.2013, 135, 15864–15872.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 15864-15872
-
-
Wang, X.1
Liu, D.P.2
Song, S.Y.3
Zhang, H.J.4
-
23
-
-
77957103617
-
Nanostructured ceria-silver synthesized in a one-pot redox reaction catalyzes carbon oxidation
-
Kayama, T.; Yamazaki, K.; Shinjoh, H. Nanostructured ceria-silver synthesized in a one-pot redox reaction catalyzes carbon oxidation. J. Am. Chem. Soc.2010, 132, 13154–13155.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 13154-13155
-
-
Kayama, T.1
Yamazaki, K.2
Shinjoh, H.3
-
24
-
-
84878700304
-
2 structured nanoparticle aggregates as catalysts for the low-temperature oxidation of CO
-
2 structured nanoparticle aggregates as catalysts for the low-temperature oxidation of CO. J. Mater. Chem. A2013, 1, 7494–7499.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 7494-7499
-
-
Guo, H.1
He, Y.B.2
Wang, Y.P.3
Liu, L.X.4
Yang, X.J.5
Wang, S.X.6
Huang, Z.J.7
Wei, Q.Y.8
-
25
-
-
84906703177
-
(Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light
-
Li, B. X.; Gu, T.; Ming, T.; Wang, J. X.; Wang, P.; Wang, J. F.; Yu, J. C. (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano2014, 8, 8152–8162.
-
(2014)
ACS Nano
, vol.8
, pp. 8152-8162
-
-
Li, B.X.1
Gu, T.2
Ming, T.3
Wang, J.X.4
Wang, P.5
Wang, J.F.6
Yu, J.C.7
-
27
-
-
84857869552
-
2O nanowires with improved supercapacitive properties
-
2O nanowires with improved supercapacitive properties. Nanoscale2012, 4, 2145–2149.
-
(2012)
Nanoscale
, vol.4
, pp. 2145-2149
-
-
Wang, B.1
Zhu, T.2
Wu, H.B.3
Xu, R.4
Chen, J.S.5
Lou, X.W.6
-
28
-
-
84897978359
-
2 core@shell cubes: Designed synthesis and optimization of catalytic properties
-
2 core@shell cubes: Designed synthesis and optimization of catalytic properties. Chem. Eur. J.2014, 20, 4469–4473.
-
(2014)
Chem. Eur. J.
, vol.20
, pp. 4469-4473
-
-
Zhen, J.M.1
Wang, X.2
Liu, D.P.3
Song, S.Y.4
Wang, Z.5
Wang, Y.H.6
Li, J.Q.7
Wang, F.8
Zhang, H.J.9
-
30
-
-
74849118856
-
2/CuO catalyst as an alternative to classical direct configurations for preferential oxidation of CO in hydrogen-rich stream
-
2/CuO catalyst as an alternative to classical direct configurations for preferential oxidation of CO in hydrogen-rich stream. J. Am. Chem. Soc.2010, 132, 34–35.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 34-35
-
-
Hornés, A.1
Hungría, A.B.2
Bera, P.3
Cámara, A.L.4
Fernández-García, M.5
Martínez-Arias, A.6
Barrio, L.7
Estrella, M.8
Zhou, G.9
Fonseca, J.J.10
-
31
-
-
84874941803
-
3 nanowires as high capacity lithium-ion battery anodes
-
3 nanowires as high capacity lithium-ion battery anodes. Nano Res.2013, 6, 167–173.
-
(2013)
Nano Res.
, vol.6
, pp. 167-173
-
-
Wu, H.1
Xu, M.2
Wang, Y.C.3
Zheng, G.F.4
-
32
-
-
84891386780
-
2 nanobelt supercapacitors
-
2 nanobelt supercapacitors. J. Mater. Chem. A2014, 2, 1443–1447.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 1443-1447
-
-
Li, W.Y.1
Xu, K.B.2
An, L.3
Jiang, F.R.4
Zhou, X.Y.5
Yang, J.M.6
Chen, Z.G.7
Zou, R.J.8
Hu, J.Q.9
-
33
-
-
84919934297
-
2 core@shell microspheres for catalytic CO oxidation
-
2 core@shell microspheres for catalytic CO oxidation. ACS Appl. Mater. Interfaces2014, 6, 22216–22223.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 22216-22223
-
-
Wang, F.1
Wang, X.2
Liu, D.P.3
Zhen, J.M.4
Li, J.Q.5
Wang, Y.H.6
Zhang, H.J.7
-
35
-
-
80053496855
-
4 nanowires with high catalytic oxidation of CO
-
4 nanowires with high catalytic oxidation of CO. Chem. Commun.2011, 47, 11279–11281.
-
(2011)
Chem. Commun.
, vol.47
, pp. 11279-11281
-
-
Sun, Y.1
Lv, P.2
Yang, J.Y.3
He, L.4
Nie, J.C.5
Liu, X.W.6
Li, Y.D.7
-
36
-
-
84907806138
-
Low pressure induced porous nanorods of ceria with high reducibility and large oxygen storage capacity: synthesis and catalytic applications
-
Li, J.; Zhang, Z. Y.; Tian, Z. M.; Zhou, X. M.; Zheng, Z. P.; Ma, Y. Y.; Qu, Y. Q. Low pressure induced porous nanorods of ceria with high reducibility and large oxygen storage capacity: synthesis and catalytic applications. J. Mater. Chem. A2014, 2, 16459–16466.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 16459-16466
-
-
Li, J.1
Zhang, Z.Y.2
Tian, Z.M.3
Zhou, X.M.4
Zheng, Z.P.5
Ma, Y.Y.6
Qu, Y.Q.7
-
38
-
-
84892381142
-
2-ZnO composite hollow microspheres with enhanced catalytic activity for CO oxidation
-
2-ZnO composite hollow microspheres with enhanced catalytic activity for CO oxidation. ACS Appl. Mater. Interfaces2014, 6, 421–428.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 421-428
-
-
Xie, Q.S.1
Zhao, Y.2
Guo, H.Z.3
Lu, A.L.4
Zhang, X.X.5
Wang, L.S.6
Chen, M.S.7
Peng, D.L.8
-
39
-
-
84866487813
-
Interfacial reaction-directed synthesis of Ce-Mn binary oxide nanotubes and their applications in CO oxidation and water treatment
-
Chen, G. Z.; Rosei, F.; Ma, D. L. Interfacial reaction-directed synthesis of Ce-Mn binary oxide nanotubes and their applications in CO oxidation and water treatment. Adv. Funct. Mater.2012, 22, 3914–3920.
-
(2012)
Adv. Funct. Mater.
, vol.22
, pp. 3914-3920
-
-
Chen, G.Z.1
Rosei, F.2
Ma, D.L.3
-
40
-
-
77952952058
-
2 oxidation catalysts
-
2 oxidation catalysts. Catal. Lett.2010, 137, 28–34.
-
(2010)
Catal. Lett.
, vol.137
, pp. 28-34
-
-
Guan, Y.J.1
Hensen, E.J.M.2
Liu, Y.3
Zhang, H.D.4
Feng, Z.C.5
Li, C.6
|