메뉴 건너뛰기




Volumn 101, Issue , 2015, Pages 452-461

CORAL: Prediction of binding affinity and efficacy of thyroid hormone receptor ligands

Author keywords

Endocrine disrupting; Monte Carlo method; QSAR; Thyroid hormone receptor

Indexed keywords

THYROID HORMONE RECEPTOR; THYROID HORMONE RECEPTOR AF 2; UNCLASSIFIED DRUG; LIGAND;

EID: 84937199592     PISSN: 02235234     EISSN: 17683254     Source Type: Journal    
DOI: 10.1016/j.ejmech.2015.07.012     Document Type: Article
Times cited : (19)

References (16)
  • 1
    • 84906772173 scopus 로고    scopus 로고
    • Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods
    • R. Politi I. Rusyn A. Tropsha Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods Toxicol. Appl. Pharmacol. 280 2014 177 189
    • (2014) Toxicol. Appl. Pharmacol. , vol.280 , pp. 177-189
    • Politi, R.1    Rusyn, I.2    Tropsha, A.3
  • 5
    • 76549096834 scopus 로고    scopus 로고
    • Establishment of yeast reporter assay systems to detect ligands of thyroid hormone receptors α and β
    • K. Shiizaki S. Asai S. Ebata M. Kawanishi T. Yagi Establishment of yeast reporter assay systems to detect ligands of thyroid hormone receptors α and β Toxicol. Vitro 24 2010 638 644
    • (2010) Toxicol. Vitro , vol.24 , pp. 638-644
    • Shiizaki, K.1    Asai, S.2    Ebata, S.3    Kawanishi, M.4    Yagi, T.5
  • 7
    • 84861335165 scopus 로고    scopus 로고
    • A QSAR study for modeling of thyroid receptors β1 selective ligands by application of adaptive neuro-fuzzy inference system and radial basis function
    • G. Azimi S. Afiuni-Zadeh A. Karami A QSAR study for modeling of thyroid receptors β1 selective ligands by application of adaptive neuro-fuzzy inference system and radial basis function J. Chemom. 26 2012 135 142
    • (2012) J. Chemom. , vol.26 , pp. 135-142
    • Azimi, G.1    Afiuni-Zadeh, S.2    Karami, A.3
  • 9
    • 0023965741 scopus 로고
    • SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
    • D. Weininger SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules J. Chem. Inf. Comput. Sci.® 28 1988 31 36
    • (1988) J. Chem. Inf. Comput. Sci.® , vol.28 , pp. 31-36
    • Weininger, D.1
  • 11
    • 0000144425 scopus 로고
    • Smiles. 3. Depict. Graphical depiction of chemical structures
    • D. Weininger Smiles. 3. Depict. Graphical depiction of chemical structures J. Chem. Information Comput. Sci. 30 1990 237 243
    • (1990) J. Chem. Information Comput. Sci. , vol.30 , pp. 237-243
    • Weininger, D.1
  • 12
    • 79959742537 scopus 로고    scopus 로고
    • CORAL: quantitative structure-activity relationship models for estimating toxicity of organic compounds in rats
    • A.P. Toropova A.A. Toropov E. Benfenati G. Gini D. Leszczynska J. Leszczynski CORAL: quantitative structure-activity relationship models for estimating toxicity of organic compounds in rats J. Comput. Chem. 32 2011 2727 2733
    • (2011) J. Comput. Chem. , vol.32 , pp. 2727-2733
    • Toropova, A.P.1    Toropov, A.A.2    Benfenati, E.3    Gini, G.4    Leszczynska, D.5    Leszczynski, J.6
  • 14
    • 84909979851 scopus 로고    scopus 로고
    • Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions
    • A.P. Toropova A.A. Toropov R. Rallo D. Leszczynska J. Leszczynski Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions Ecotoxicol. Environ. Saf. 112 2015 39 45
    • (2015) Ecotoxicol. Environ. Saf. , vol.112 , pp. 39-45
    • Toropova, A.P.1    Toropov, A.A.2    Rallo, R.3    Leszczynska, D.4    Leszczynski, J.5
  • 15
    • 84937200348 scopus 로고    scopus 로고
    • accessed 30.04.15
    • REACH 2007 http://ec.europa.eu/environment/chemicals/reach/reach-intro.htm accessed 30.04.15
    • (2007) REACH


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.