메뉴 건너뛰기




Volumn , Issue , 2014, Pages

CCNF for continuous emotion tracking in music: Comparison with CCRF and relative feature representation

Author keywords

continuous tracking; dimensional representation; machine learning; Music emotion recognition

Indexed keywords

HIERARCHICAL SYSTEMS; LEARNING SYSTEMS;

EID: 84937120771     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMEW.2014.6890697     Document Type: Conference Paper
Times cited : (16)

References (21)
  • 1
    • 84888261272 scopus 로고    scopus 로고
    • BPI Tech. Rep.
    • BPI, "Digital Music Nation, " Tech. Rep., 2013.
    • (2013) Digital Music Nation
  • 2
    • 33745702923 scopus 로고    scopus 로고
    • How people describe their music information needs : A grounded theory analysis of music queries
    • D Bainbridge, S J Cunningham, and J S Downie, "How People Describe Their Music Information Needs : A Grounded Theory Analysis Of Music Queries, " in Proc. of ISMIR, 2003, pp. 221-222.
    • (2003) Proc. of ISMIR , pp. 221-222
    • Bainbridge, D.1    Cunningham, S.J.2    Downie, J.S.3
  • 3
    • 49549124035 scopus 로고    scopus 로고
    • Automatic emotion prediction of song excerpts: Index construction, algorithm design, and empirical comparison
    • K F MacDorman and Stuart Ough Chin-Chang H, "Automatic Emotion Prediction of Song Excerpts: Index Construction, Algorithm Design, and Empirical Comparison, " Journal of New Music Research, vol. 36, no. 4, 2007.
    • (2007) Journal of New Music Research , vol.36 , Issue.4
    • Macdorman, K.F.1    Stuart, O.2    Chin-Chang, H.3
  • 6
    • 84555174290 scopus 로고    scopus 로고
    • Prediction of time-varying musical mood distributions from audio
    • E M Schmidt and Y E Kim, "Prediction of time-varying musical mood distributions from audio, " in Proc. of ISMIR, 2010, pp. 465-470.
    • (2010) Proc. of ISMIR , pp. 465-470
    • Schmidt, E.M.1    Kim, Y.E.2
  • 7
    • 84937113021 scopus 로고    scopus 로고
    • Feature selection for content-based, time-varying musical emotion regression
    • ACM
    • E M Schmidt, D Turnbull, and Y E Kim, "Feature selection for content-based, time-varying musical emotion regression, " in Proc. of ISMIR. 2010, ACM.
    • (2010) Proc. of ISMIR.
    • Schmidt, E.M.1    Turnbull, D.2    Kim, Y.E.3
  • 8
    • 31144442341 scopus 로고    scopus 로고
    • Modeling perceived emotion with continuous musical features
    • E Schubert, "Modeling Perceived Emotion With Continuous Musical Features, " Music Perception, vol. 21, no. 4, 2004.
    • (2004) Music Perception , vol.21 , Issue.4
    • Schubert, E.1
  • 9
    • 64849109428 scopus 로고    scopus 로고
    • Sentiment retrieval in popular music based on sequential learning
    • V R Carvalho and Chih-yu Chao, "Sentiment Retrieval in Popular Music Based on Sequential Learning, " Proc. ACM SIGIR, 2005.
    • (2005) Proc. ACM SIGIR
    • Carvalho, V.R.1    Chao, C.2
  • 10
    • 79952403274 scopus 로고    scopus 로고
    • Prediction of time-varying musical mood distributions using Kalman filtering
    • E M Schmidt and Y E Kim, "Prediction of Time-Varying Musical Mood Distributions Using Kalman Filtering, " 9th ICMLA, pp. 655-660, 2010.
    • (2010) 9th ICMLA , pp. 655-660
    • Schmidt, E.M.1    Kim, Y.E.2
  • 11
    • 84872700353 scopus 로고    scopus 로고
    • Modeling musical emotion dynamics with Conditional Random Fields
    • EMSchmidt and Y E Kim, "Modeling musical emotion dynamics with Conditional Random Fields, " Proc. of ISMIR, 2011.
    • (2011) Proc. of ISMIR
    • Schmidt, E.M.1    Kim, Y.E.2
  • 12
    • 84888255836 scopus 로고    scopus 로고
    • Emotion tracking in music using continuous conditional random fields and relative feature representation
    • V Imbrasaite, T Baltrusaitis, and P Robinson, "Emotion tracking in music using Continuous Conditional Random Fields and relative feature representation, " in Proc. IEEE ICME, 2013.
    • (2013) Proc. IEEE ICME
    • Imbrasaite, V.1    Baltrusaitis, T.2    Robinson, P.3
  • 13
    • 84905267599 scopus 로고    scopus 로고
    • Dimensional affect recognition using continuous conditional random fields
    • T Baltrusaitis, N Banda, and P Robinson, "Dimensional Affect Recognition using Continuous Conditional Random Fields, " in IEEE FG, 2013.
    • (2013) IEEE FG
    • Baltrusaitis, T.1    Banda, N.2    Robinson, P.3
  • 14
    • 85093059925 scopus 로고    scopus 로고
    • Global ranking using continuous conditional random fields
    • T Qin, T Liu, X Zhang, D Wang, and H Li, "Global Ranking Using Continuous Conditional Random Fields, " in NIPS, 2008.
    • (2008) NIPS
    • Qin, T.1    Liu, T.2    Zhang, X.3    Wang, D.4    Li, H.5
  • 15
    • 77956051103 scopus 로고    scopus 로고
    • Continuous conditional random fields for regression in remote sensing
    • V. Radosavljevic, S. Vucetic, and Z. Obradovic, "Continuous Conditional Random Fields for Regression in Remote Sensing, " in ECAI, 2010, pp. 809-814.
    • (2010) ECAI , pp. 809-814
    • Radosavljevic, V.1    Vucetic, S.2    Obradovic, Z.3
  • 19
    • 84907704871 scopus 로고    scopus 로고
    • Absolute or relative A new approach to building feature vectors for emotion tracking in music
    • V Imbrasaite and P Robinson, "Absolute or relative A new approach to building feature vectors for emotion tracking in music, " in Proc. ICME3, 2013.
    • (2013) Proc. ICME3
    • Imbrasaite, V.1    Robinson, P.2
  • 20
    • 84873597750 scopus 로고    scopus 로고
    • A comparative study of collaborative vs. Traditional music mood annotation
    • J A Speck, EMSchmidt, B G Morton, and Y E Kim, "A comparative study of collaborative vs. Traditional music mood annotation, " Proc. of ISMIR, 2011.
    • (2011) Proc. of ISMIR
    • Speck, J.A.1    Schmidt, E.M.2    Morton, B.G.3    Kim, Y.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.