메뉴 건너뛰기




Volumn 6, Issue JULY, 2015, Pages

Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens

Author keywords

Hypersensitive response; Non host resistance; Oxidative burst; P5C; Plant defense; Proline; ROS

Indexed keywords

ARABIDOPSIS THALIANA; BACTERIA (MICROORGANISMS); MAMMALIA; NICOTIANA BENTHAMIANA;

EID: 84936940340     PISSN: None     EISSN: 1664462X     Source Type: Journal    
DOI: 10.3389/fpls.2015.00503     Document Type: Review
Times cited : (117)

References (71)
  • 1
    • 0032549798 scopus 로고    scopus 로고
    • Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity
    • Alvarez, M. E., Pennell, R. I., Meijer, P. J., Ishikawa, A., Dixon, R. A., and Lamb, C. (1998). Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92, 773-784. doi: 10. 1016/S0092-8674(00)81405-1.
    • (1998) Cell , vol.92 , pp. 773-784
    • Alvarez, M.E.1    Pennell, R.I.2    Meijer, P.J.3    Ishikawa, A.4    Dixon, R.A.5    Lamb, C.6
  • 2
    • 0042349245 scopus 로고    scopus 로고
    • Oxidative stress and antioxidative system in plants
    • Arora, A., Sairam, R. K., and Srivastava, G. C. (2002). Oxidative stress and antioxidative system in plants. Curr. Sci. 82, 1227-1238.
    • (2002) Curr. Sci , vol.82 , pp. 1227-1238
    • Arora, A.1    Sairam, R.K.2    Srivastava, G.C.3
  • 3
    • 0029070906 scopus 로고
    • Use of Arabidopsis thalianadefense-related mutants to dissect the plant response to pathogens
    • Ausubel, F. M., Katagiri, F., Mindrinos, M., and Glazebrook, J. (1995). Use of Arabidopsis thalianadefense-related mutants to dissect the plant response to pathogens. Proc. Natl. Acad. Sci. U. S. A. 92, 4189-4196. doi: 10. 1073/pnas. 92. 10. 4189.
    • (1995) Proc. Natl. Acad. Sci. U.S.A , vol.92 , pp. 4189-4196
    • Ausubel, F.M.1    Katagiri, F.2    Mindrinos, M.3    Glazebrook, J.4
  • 4
    • 0037423390 scopus 로고    scopus 로고
    • Initiation of RPS2-specified disease resistance inArabidopsis is coupled to the AvrRpt2-directed elimination of RIN4
    • Axtell, M. J., and Staskawicz, B. J. (2003). Initiation of RPS2-specified disease resistance inArabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112, 369-377. doi: 10. 1016/S0092-8674(03)00036-9.
    • (2003) Cell , vol.112 , pp. 369-377
    • Axtell, M.J.1    Staskawicz, B.J.2
  • 6
    • 84912033266 scopus 로고    scopus 로고
    • Possible effects of pathogen inoculation and salicylic acid pre-treatment on the biochemical changes and proline accumulation in green bean
    • Ayoubi, N., and Soleimani, M. J. (2014). Possible effects of pathogen inoculation and salicylic acid pre-treatment on the biochemical changes and proline accumulation in green bean. Arch. Phytopathol. Plant Prot. 48, 212-222. doi: 10. 1080/03235408. 2014. 884826.
    • (2014) Arch. Phytopathol. Plant Prot , vol.48 , pp. 212-222
    • Ayoubi, N.1    Soleimani, M.J.2
  • 7
    • 33745638576 scopus 로고    scopus 로고
    • The roles of reactive oxygen species in plant cells
    • Bailey-Serres, J., and Mittler, R. (2006). The roles of reactive oxygen species in plant cells. Plant Physiol. 141, 311. doi: 10. 1104/pp. 104. 900191.
    • (2006) Plant Physiol , vol.141 , pp. 311
    • Bailey-Serres, J.1    Mittler, R.2
  • 8
    • 57349182515 scopus 로고    scopus 로고
    • Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress
    • Banu, M. N. A., Hoque, M. A., Watanabe-Sugimoto, M., Matsuoka, K., Nakamura, Y., Shimoishi, Y., et al. (2009). Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. J. Plant Physiol. 166, 146-156. doi: 10. 1016/j. jplph. 2008. 03. 002.
    • (2009) J. Plant Physiol , vol.166 , pp. 146-156
    • Banu, M.N.A.1    Hoque, M.A.2    Watanabe-Sugimoto, M.3    Matsuoka, K.4    Nakamura, Y.5    Shimoishi, Y.6
  • 9
    • 0028980589 scopus 로고
    • Glutamate gamma-semialdehyde as a natural transition state analogue inhibitor of Escherichia coli glucosamine-6-phosphate synthase
    • Bearne, S. L., and Wolfenden, R. (1995). Glutamate gamma-semialdehyde as a natural transition state analogue inhibitor of Escherichia coli glucosamine-6-phosphate synthase. Biochemistry 34, 11515-11520. doi: 10. 1021/bi00036a026.
    • (1995) Biochemistry , vol.34 , pp. 11515-11520
    • Bearne, S.L.1    Wolfenden, R.2
  • 10
    • 84926373170 scopus 로고    scopus 로고
    • Signaling mechanisms in pattern-triggered immunity (PTI)
    • Bigeard, J., Colcombet, J., and Hirt, H. (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Mol. Plant 8, 521-539. doi: 10. 1016/j. molp. 2014. 12. 022.
    • (2015) Mol. Plant , vol.8 , pp. 521-539
    • Bigeard, J.1    Colcombet, J.2    Hirt, H.3
  • 11
    • 0001986727 scopus 로고
    • Oxidation of proline by plant mitochondria
    • Boggess, S. F., Koeppe, D. E., and Stewart, C. R. (1978). Oxidation of proline by plant mitochondria. Plant Physiol. 62, 22-25. doi: 10. 1104/pp. 62. 1. 22.
    • (1978) Plant Physiol , vol.62 , pp. 22-25
    • Boggess, S.F.1    Koeppe, D.E.2    Stewart, C.R.3
  • 12
    • 29244490062 scopus 로고    scopus 로고
    • Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis
    • Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R., and Zhu, J.-K. (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell123, 1279-1291. doi: 10. 1016/j. cell. 2005. 11. 035.
    • (2005) Cell , vol.123 , pp. 1279-1291
    • Borsani, O.1    Zhu, J.2    Verslues, P.E.3    Sunkar, R.4    Zhu, J.-K.5
  • 13
    • 0032430187 scopus 로고    scopus 로고
    • The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response
    • Boyes, D. C., Nam, J., and Dangl, J. L. (1998). The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc. Natl. Acad. Sci. U. S. A. 95, 15849-15854. doi: 10. 1073/pnas. 95. 26. 15849.
    • (1998) Proc. Natl. Acad. Sci. U.S.A , vol.95 , pp. 15849-15854
    • Boyes, D.C.1    Nam, J.2    Dangl, J.L.3
  • 14
    • 79953741844 scopus 로고    scopus 로고
    • Proline dehydrogenase contributes to pathogen defense in Arabidopsis
    • Cecchini, N. M., Monteoliva, M. I., and Alvarez, M. E. (2011). Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiol. 155, 1947-1959. doi: 10. 1104/pp. 110. 167163.
    • (2011) Plant Physiol , vol.155 , pp. 1947-1959
    • Cecchini, N.M.1    Monteoliva, M.I.2    Alvarez, M.E.3
  • 15
    • 14744274093 scopus 로고    scopus 로고
    • Proline suppresses apoptosis in the fungal pathogenColletotrichum trifolii
    • Chen, C., and Dickman, M. B. (2005). Proline suppresses apoptosis in the fungal pathogenColletotrichum trifolii. Proc. Natl. Acad. Sci. U. S. A. 102, 3459-3464. doi: 10. 1073/pnas. 0407960102.
    • (2005) Proc. Natl. Acad. Sci. U.S.A , vol.102 , pp. 3459-3464
    • Chen, C.1    Dickman, M.B.2
  • 16
    • 33745135075 scopus 로고    scopus 로고
    • Tomato QM-like protein protects Saccharomyces cerevisiae cells against oxidative stress by regulating intracellular proline levels
    • Chen, C., Wanduragala, S., Becker, D. F., and Dickman, M. B. (2006). Tomato QM-like protein protects Saccharomyces cerevisiae cells against oxidative stress by regulating intracellular proline levels. Appl. Environ. Microbiol. 72, 4001-4006. doi: 10. 1128/AEM. 02428-05.
    • (2006) Appl. Environ. Microbiol , vol.72 , pp. 4001-4006
    • Chen, C.1    Wanduragala, S.2    Becker, D.F.3    Dickman, M.B.4
  • 17
    • 80052788329 scopus 로고    scopus 로고
    • Proline induces calcium-mediated oxidative burst and salicylic acid signaling
    • Chen, J., Zhang, Y., Wang, C., Lü, W., Jin, J. B., and Hua, X. (2011). Proline induces calcium-mediated oxidative burst and salicylic acid signaling. Amino Acids 40, 1473-1484. doi: 10. 1007/s00726-010-0757-2.
    • (2011) Amino Acids , vol.40 , pp. 1473-1484
    • Chen, J.1    Zhang, Y.2    Wang, C.3    Lü, W.4    Jin, J.B.5    Hua, X.6
  • 18
    • 0027244094 scopus 로고
    • Cloning of ornithine d-aminotransferase cDNA by trans-complementation in Escherichia coli and regulation of proline biosynthesis
    • Delauney, A., Hu, C., Kishor, P. K., and Verma, D. (1993). Cloning of ornithine d-aminotransferase cDNA by trans-complementation in Escherichia coli and regulation of proline biosynthesis. J. Biol. Chem. 268, 18673-18678.
    • (1993) J. Biol. Chem , vol.268 , pp. 18673-18678
    • Delauney, A.1    Hu, C.2    Kishor, P.K.3    Verma, D.4
  • 19
    • 21644443168 scopus 로고    scopus 로고
    • The role of Δ1-pyrroline-5-carboxylate dehydrogenase in proline degradation
    • Deuschle, K., Funck, D., Forlani, G., Stransky, H., Biehl, A., Leister, D., et al. (2004). The role of Δ1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16, 3413-3425. doi: 10. 1105/tpc. 104. 023622.
    • (2004) Plant Cell , vol.16 , pp. 3413-3425
    • Deuschle, K.1    Funck, D.2    Forlani, G.3    Stransky, H.4    Biehl, A.5    Leister, D.6
  • 20
    • 0034870427 scopus 로고    scopus 로고
    • A nuclear gene encoding mitochondrial Δ1-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity
    • Deuschle, K., Funck, D., Hellmann, H., Daschner, K., Binder, S., and Frommer, W. B. (2001). A nuclear gene encoding mitochondrial Δ1-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity. Plant J. 27, 345-355. doi: 10. 1046/j. 1365-313X. 2001. 01101. x.
    • (2001) Plant J , vol.27 , pp. 345-355
    • Deuschle, K.1    Funck, D.2    Hellmann, H.3    Daschner, K.4    Binder, S.5    Frommer, W.B.6
  • 21
    • 0000760012 scopus 로고
    • Submitochondrial location and electron transport characteristics of enzymes involved in proline oxidation
    • Elthon, T. E., and Stewart, C. R. (1981). Submitochondrial location and electron transport characteristics of enzymes involved in proline oxidation. Plant Physiol. 67, 780-784. doi: 10. 1104/pp. 67. 4. 780.
    • (1981) Plant Physiol , vol.67 , pp. 780-784
    • Elthon, T.E.1    Stewart, C.R.2
  • 22
    • 1642546372 scopus 로고    scopus 로고
    • Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis
    • Fabro, G., Kovacs, I., Pavet, V., Szabados, L., and Alvarez, M. E. (2004). Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol. Plant Microbe Interact. 17, 343-350. doi: 10. 1094/MPMI. 2004. 17. 4. 343.
    • (2004) Mol. Plant Microbe Interact , vol.17 , pp. 343-350
    • Fabro, G.1    Kovacs, I.2    Pavet, V.3    Szabados, L.4    Alvarez, M.E.5
  • 24
    • 43649091038 scopus 로고    scopus 로고
    • Ornithine-δ-aminotransferase is essential for arginine catabolism but not for proline biosynthesis
    • Funck, D., Stadelhofer, B., and Koch, W. (2008). Ornithine-δ-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol. 8: 40. doi: 10. 1186/1471-2229-8-40.
    • (2008) BMC Plant Biol , vol.8 , pp. 40
    • Funck, D.1    Stadelhofer, B.2    Koch, W.3
  • 25
    • 0034068809 scopus 로고    scopus 로고
    • Arginine degradation by arginine in mitochondria of soybean seedling cotyledons
    • Goldraij, A., and Polacco, J. C. (2000). Arginine degradation by arginine in mitochondria of soybean seedling cotyledons. Planta 4, 652-658. doi: 10. 1007/s004250050056.
    • (2000) Planta , vol.4 , pp. 652-658
    • Goldraij, A.1    Polacco, J.C.2
  • 26
    • 0030904878 scopus 로고    scopus 로고
    • Metabolic implications of stress-induced proline accumulation in plants
    • Hare, P. D., and Cress, W. A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21, 79-102. doi: 10. 1023/A: 1005703923347.
    • (1997) Plant Growth Regul , vol.21 , pp. 79-102
    • Hare, P.D.1    Cress, W.A.2
  • 27
    • 0034201119 scopus 로고    scopus 로고
    • Hypersensitivity of anArabidopsis sugar signaling mutant toward exogenous proline application
    • Hellmann, H., Funck, D., Rentsch, D., and Frommer, W. B. (2000). Hypersensitivity of anArabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiol. 123, 779-789. doi: 10. 1104/pp. 123. 2. 779.
    • (2000) Plant Physiol , vol.123 , pp. 779-789
    • Hellmann, H.1    Funck, D.2    Rentsch, D.3    Frommer, W.B.4
  • 28
    • 0026774663 scopus 로고
    • A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants
    • Hu, C. A., Delauney, A. J., and Verma, D. P. (1992). A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc. Natl. Acad. Sci. U. S. A. 89, 9354-9358. doi: 10. 1073/pnas. 89. 19. 9354.
    • (1992) Proc. Natl. Acad. Sci. U.S.A , vol.89 , pp. 9354-9358
    • Hu, C.A.1    Delauney, A.J.2    Verma, D.P.3
  • 29
    • 33846514704 scopus 로고    scopus 로고
    • Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis
    • Hu, C. A. A., Donald, S. P., Yu, J., Lin, W. W., Liu, Z., Steel, G., et al. (2007). Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis. Mol. Cell. Biochem. 295, 85-92. doi: 10. 1007/s11010-006-9276-6.
    • (2007) Mol. Cell. Biochem , vol.295 , pp. 85-92
    • Hu, C.A.A.1    Donald, S.P.2    Yu, J.3    Lin, W.W.4    Liu, Z.5    Steel, G.6
  • 30
    • 0003505419 scopus 로고    scopus 로고
    • Compendium of Chemical Terminology
    • 2nd Edn, eds A.D. McNaught and A. Wilkinson (Oxford: Blackwell Scientific Publications)
    • IUPAC. (1997). "Compendium of Chemical Terminology", in The Gold Book, 2nd Edn, eds A. D. McNaught and A. Wilkinson (Oxford: Blackwell Scientific Publications).
    • (1997) The Gold Book
    • IUPAC1
  • 31
    • 33751100626 scopus 로고    scopus 로고
    • The plant immune system
    • Jones, J. D., and Dangl, J. L. (2006). The plant immune system. Nature 444, 323-329. doi: 10. 1038/nature05286.
    • (2006) Nature , vol.444 , pp. 323-329
    • Jones, J.D.1    Dangl, J.L.2
  • 32
    • 20444419073 scopus 로고    scopus 로고
    • Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance
    • Kishor, P. K., Sangam, S., Amrutha, R. N., Laxmi, P. S., Naidu, K. R., Rao, K. R. S. S., et al. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr. Sci. 88, 424-438.
    • (2005) Curr. Sci , vol.88 , pp. 424-438
    • Kishor, P.K.1    Sangam, S.2    Amrutha, R.N.3    Laxmi, P.S.4    Naidu, K.R.5    Rao, K.R.S.S.6
  • 33
    • 0030221443 scopus 로고    scopus 로고
    • A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis
    • Kiyosue, T., Yoshiba, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1996). A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8, 1323-1335. doi: 10. 1105/tpc. 8. 8. 1323.
    • (1996) Plant Cell , vol.8 , pp. 1323-1335
    • Kiyosue, T.1    Yoshiba, Y.2    Yamaguchi-Shinozaki, K.3    Shinozaki, K.4
  • 34
    • 38649109148 scopus 로고    scopus 로고
    • Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress
    • Krishnan, N., Dickman, M. B., and Becker, D. F. (2008). Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic. Biol. Med. 44, 671-681. doi: 10. 1016/j. freeradbiomed. 2007. 10. 054.
    • (2008) Free Radic. Biol. Med , vol.44 , pp. 671-681
    • Krishnan, N.1    Dickman, M.B.2    Becker, D.F.3
  • 35
    • 0035859054 scopus 로고    scopus 로고
    • Programmed cell death, mitochondria and the plant hypersensitive response
    • Lam, E., Kato, N., and Lawton, M. (2001). Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411, 848-853. doi: 10. 1038/35081184.
    • (2001) Nature , vol.411 , pp. 848-853
    • Lam, E.1    Kato, N.2    Lawton, M.3
  • 36
    • 0006107387 scopus 로고    scopus 로고
    • The oxidative burst in plant disease resistance
    • Lamb, C., and Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 251-275. doi: 10. 1146/annurev. arplant. 48. 1. 251.
    • (1997) Annu. Rev. Plant Physiol. Plant Mol. Biol , vol.48 , pp. 251-275
    • Lamb, C.1    Dixon, R.A.2
  • 37
    • 84878604373 scopus 로고    scopus 로고
    • Reactive oxygen species homeostasis and virulence of the fungal pathogen Cryptococcus neoformansrequires an intact proline catabolism pathway
    • Lee, I. R., Lui, E. Y., Chow, E. W., Arras, S. D., Morrow, C. A., and Fraser, J. A. (2013). Reactive oxygen species homeostasis and virulence of the fungal pathogen Cryptococcus neoformansrequires an intact proline catabolism pathway. Genetics 194, 421-433. doi: 10. 1534/genetics. 113. 150326.
    • (2013) Genetics , vol.194 , pp. 421-433
    • Lee, I.R.1    Lui, E.Y.2    Chow, E.W.3    Arras, S.D.4    Morrow, C.A.5    Fraser, J.A.6
  • 38
    • 78650005349 scopus 로고    scopus 로고
    • Proline metabolism and transport in plant development
    • Lehmann, S., Funck, D., Szabados, L., and Rentsch, D. (2010). Proline metabolism and transport in plant development. Amino Acids 39, 949-962. doi: 10. 1007/s00726-010-0525-3.
    • (2010) Amino Acids , vol.39 , pp. 949-962
    • Lehmann, S.1    Funck, D.2    Szabados, L.3    Rentsch, D.4
  • 39
    • 0027286219 scopus 로고
    • The effect of pH on the solution structure of delta-1-pyrroline-2-carboxylic acid as revealed by NMR and electrospray mass spectroscopy
    • Lewis, M. L., Rowe, C. J., Sewald, N., Sutherland, J. D., Wilson, E. J., and Wright, M. C. (1993). The effect of pH on the solution structure of delta-1-pyrroline-2-carboxylic acid as revealed by NMR and electrospray mass spectroscopy. Bioorg. Med. Chem. Lett. 3, 1193-1196. doi: 10. 1016/S0960-894X(00)80313-3.
    • (1993) Bioorg. Med. Chem. Lett , vol.3 , pp. 1193-1196
    • Lewis, M.L.1    Rowe, C.J.2    Sewald, N.3    Sutherland, J.D.4    Wilson, E.J.5    Wright, M.C.6
  • 40
    • 0037155687 scopus 로고    scopus 로고
    • RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis
    • Mackey, D., Holt, B. F. III., Wiig, A., and Dangl, J. L. (2002). RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743-754. doi: 10. 1016/S0092-8674(02)00661-X.
    • (2002) Cell , vol.108 , pp. 743-754
    • Mackey, D.1    Holt, B.F.2    Wiig, A.3    Dangl, J.L.4
  • 41
    • 0034700139 scopus 로고    scopus 로고
    • Differential gene expression in p53-mediated apoptosis-resistant vs. apoptosis-sensitive tumor cell lines
    • Maxwell, S. A., and Davis, G. E. (2000). Differential gene expression in p53-mediated apoptosis-resistant vs. apoptosis-sensitive tumor cell lines. Proc. Natl. Acad. Sci. U. S. A. 97, 13009-13014. doi: 10. 1073/pnas. 230445997.
    • (2000) Proc. Natl. Acad. Sci. U.S.A , vol.97 , pp. 13009-13014
    • Maxwell, S.A.1    Davis, G.E.2
  • 42
    • 70350362955 scopus 로고    scopus 로고
    • Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes
    • Miller, G., Honig, A., Stein, H., Suzuki, N., Mitler, R., and Zilberstein, A. (2009). Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J. Biol. Chem. 289, 26482-26492. doi: 10. 1074/jbc. M109. 009340.
    • (2009) J. Biol. Chem , vol.289 , pp. 26482-26492
    • Miller, G.1    Honig, A.2    Stein, H.3    Suzuki, N.4    Mitler, R.5    Zilberstein, A.6
  • 43
    • 29444436393 scopus 로고    scopus 로고
    • A rust-inducible gene from flax (fis1) is involved in proline catabolism
    • Mitchell, H. J., Ayliffe, M. A., Rashid, K. Y., and Pryor, A. J. (2006). A rust-inducible gene from flax (fis1) is involved in proline catabolism. Planta 223, 213-222. doi: 10. 1007/s00425-005-0079-x.
    • (2006) Planta , vol.223 , pp. 213-222
    • Mitchell, H.J.1    Ayliffe, M.A.2    Rashid, K.Y.3    Pryor, A.J.4
  • 44
    • 8244227142 scopus 로고
    • Physiology of rice tungro virus disease: Proline accumulation due to infection
    • Mohanty, S. K., and Sridhar, R. (1982). Physiology of rice tungro virus disease: proline accumulation due to infection. Physiol. Plant. 56, 89-93. doi: 10. 1111/j. 1399-3054. 1982. tb04904. x.
    • (1982) Physiol. Plant , vol.56 , pp. 89-93
    • Mohanty, S.K.1    Sridhar, R.2
  • 45
    • 0035781005 scopus 로고    scopus 로고
    • Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species
    • Moller, I. M. (2001). Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 561-591. doi: 10. 1146/annurev. arplant. 52. 1. 561.
    • (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol , vol.52 , pp. 561-591
    • Moller, I.M.1
  • 46
    • 84892412622 scopus 로고    scopus 로고
    • Context of action of proline dehydrogenase (ProDH) in the hypersensitive response ofArabidopsis
    • Monteoliva, M. I., Rizzi, Y. S., Cecchini, N. M., Hajirezaei, M. R., and Alvarez, M. E. (2014). Context of action of proline dehydrogenase (ProDH) in the hypersensitive response ofArabidopsis. BMC Plant Biol. 14: 21. doi: 10. 1186/1471-2229-14-21.
    • (2014) BMC Plant Biol , vol.14 , pp. 21
    • Monteoliva, M.I.1    Rizzi, Y.S.2    Cecchini, N.M.3    Hajirezaei, M.R.4    Alvarez, M.E.5
  • 47
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochem. J. 417, 1-13. doi: 10. 1042/BJ20081386.
    • (2009) Biochem. J , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 48
    • 1242344197 scopus 로고    scopus 로고
    • Nonhost resistance: How much do we know?
    • Mysore, K. S., and Ryu, C. M. (2004). Nonhost resistance: how much do we know? Trends Plant Sci. 9, 97-104. doi: 10. 1016/j. tplants. 2003. 12. 005.
    • (2004) Trends Plant Sci , vol.9 , pp. 97-104
    • Mysore, K.S.1    Ryu, C.M.2
  • 49
    • 84864286774 scopus 로고    scopus 로고
    • The proline metabolism intermediate (delta) 1-pyrroline-5-carboxylate directly inhibits the mitochondrial respiration in budding yeast
    • Nishimura, A., Nasano, R., and Takagi, H. (2012). The proline metabolism intermediate (delta) 1-pyrroline-5-carboxylate directly inhibits the mitochondrial respiration in budding yeast. FEBS Lett. 586, 2411-2416. doi: 10. 1016/j. febslet. 2012. 05. 056.
    • (2012) FEBS Lett , vol.586 , pp. 2411-2416
    • Nishimura, A.1    Nasano, R.2    Takagi, H.3
  • 50
    • 4344579413 scopus 로고    scopus 로고
    • Role of the yeast acetyltransferase Mpr1 in oxidative stress: Regulation of oxygen reactive species caused by a toxic proline catabolism intermediate
    • Nomura, M., and Takagi, H. (2004). Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate. Proc. Natl. Acad. Sci. U. S. A. 101, 12616-12621. doi: 10. 1073/pnas. 0403349101.
    • (2004) Proc. Natl. Acad. Sci. U.S.A , vol.101 , pp. 12616-12621
    • Nomura, M.1    Takagi, H.2
  • 51
    • 84880663565 scopus 로고    scopus 로고
    • Proline dehydrogenase regulates redox state and respiratory metabolism in Trypanosoma cruzi
    • Paes, L. S., Mantilla, B. S., Zimbres, F. M., Pral, E. M. F., Melo, P. D., Tahara, E. B., et al. (2013). Proline dehydrogenase regulates redox state and respiratory metabolism in Trypanosoma cruzi. PLoS ONE 8: e69419. doi: 10. 1371/journal. pone. 0069419.
    • (2013) PLoS ONE , vol.8
    • Paes, L.S.1    Mantilla, B.S.2    Zimbres, F.M.3    Pral, E.M.F.4    Melo, P.D.5    Tahara, E.B.6
  • 52
    • 84899826580 scopus 로고    scopus 로고
    • How reactive oxygen species and proline face stress together
    • Rejeb, K. B., Abdelly, C., and Savouré, A. (2014). How reactive oxygen species and proline face stress together. Plant Physiol. Biochem. 80, 278-284. doi: 10. 1016/j. plaphy. 2014. 04. 007.
    • (2014) Plant Physiol. Biochem , vol.80 , pp. 278-284
    • Rejeb, K.B.1    Abdelly, C.2    Savouré, A.3
  • 53
    • 0032064163 scopus 로고    scopus 로고
    • Isolation of the ornithine-δ-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana
    • Roosens, N. H., Thu, T. T., Iskandar, H. M., and Jacobs, M. (1998). Isolation of the ornithine-δ-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol. 117, 263-271. doi: 10. 1104/pp. 117. 1. 263.
    • (1998) Plant Physiol , vol.117 , pp. 263-271
    • Roosens, N.H.1    Thu, T.T.2    Iskandar, H.M.3    Jacobs, M.4
  • 54
    • 84901065582 scopus 로고    scopus 로고
    • Respiratory electron transfer pathways in plant mitochondria
    • Schertl, P., and Braun, H. P. (2014). Respiratory electron transfer pathways in plant mitochondria. Front. Plant Sci. 5: 163. doi: 10. 3389/fpls. 2014. 00163.
    • (2014) Front. Plant Sci , vol.5 , pp. 163
    • Schertl, P.1    Braun, H.P.2
  • 55
    • 35348974965 scopus 로고    scopus 로고
    • Biochemical characterization, homology modeling and docking studies of ornithine δ-aminotransferase-an important enzyme in proline biosynthesis of plants
    • Sekhar, P. N., Amrutha, R. N., Sangam, S., Verma, D. P. S., and Kishor, P. K. (2007). Biochemical characterization, homology modeling and docking studies of ornithine δ-aminotransferase-an important enzyme in proline biosynthesis of plants. J. Mol. Graph. Model. 26, 709-719. doi: 10. 1016/j. jmgm. 2007. 04. 006.
    • (2007) J. Mol. Graph. Model , vol.26 , pp. 709-719
    • Sekhar, P.N.1    Amrutha, R.N.2    Sangam, S.3    Verma, D.P.S.4    Kishor, P.K.5
  • 56
    • 84862133860 scopus 로고    scopus 로고
    • Ornithine-delta-aminotransferase and proline dehydrogenase genes play a role in non-host disease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response
    • Senthil-Kumar, M., and Mysore, K. S. (2012). Ornithine-delta-aminotransferase and proline dehydrogenase genes play a role in non-host disease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response. Plant Cell Environ. 35, 1329-1343. doi: 10. 1111/j. 1365-3040. 2012. 02492. x.
    • (2012) Plant Cell Environ , vol.35 , pp. 1329-1343
    • Senthil-Kumar, M.1    Mysore, K.S.2
  • 57
    • 84881465992 scopus 로고    scopus 로고
    • Nonhost resistance against bacterial pathogens: Retrospectives and prospects
    • Senthil-Kumar, M., and Mysore, K. S. (2013). Nonhost resistance against bacterial pathogens: retrospectives and prospects. Annu. Rev. Phytopathol. 51, 407-427. doi: 10. 1146/annurev-phyto-082712-102319.
    • (2013) Annu. Rev. Phytopathol , vol.51 , pp. 407-427
    • Senthil-Kumar, M.1    Mysore, K.S.2
  • 58
    • 84870448548 scopus 로고    scopus 로고
    • Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions
    • Sharma, P., Jha, A. B., Dubey, R. S., and Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 1-26. doi: 10. 1155/2012/217037.
    • (2012) J. Bot , vol.2012 , pp. 1-26
    • Sharma, P.1    Jha, A.B.2    Dubey, R.S.3    Pessarakli, M.4
  • 59
    • 56049098985 scopus 로고    scopus 로고
    • Ornithine δ-aminotransferase: An enzyme implicated in salt tolerance in higher plants
    • Stránská, J., Kopečný, D., Tylichová, M., Snégaroff, J., and Šebela, M. (2008). Ornithine δ-aminotransferase: an enzyme implicated in salt tolerance in higher plants. Plant Signal. Behav. 3, 929-935. doi: 10. 4161/psb. 6771.
    • (2008) Plant Signal. Behav , vol.3 , pp. 929-935
    • Stránská, J.1    Kopečný, D.2    Tylichová, M.3    Snégaroff, J.4    Šebela, M.5
  • 60
    • 75749084035 scopus 로고    scopus 로고
    • Proline: A multifunctional amino acid
    • Szabados, L., and Savoure, A. (2010). Proline: a multifunctional amino acid. Trends Plant Sci. 15, 89-97. doi: 10. 1016/j. tplants. 2009. 11. 009.
    • (2010) Trends Plant Sci , vol.15 , pp. 89-97
    • Szabados, L.1    Savoure, A.2
  • 61
    • 0000787544 scopus 로고
    • Subcellular Location of delta 1-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean
    • Szoke, A., Miao, G. H., Hong, Z., and Verma, D. P. (1992). Subcellular Location of delta 1-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol. 99, 1642-1649. doi: 10. 1104/pp. 99. 4. 1642.
    • (1992) Plant Physiol , vol.99 , pp. 1642-1649
    • Szoke, A.1    Miao, G.H.2    Hong, Z.3    Verma, D.P.4
  • 62
    • 53849128901 scopus 로고    scopus 로고
    • Structural biology of proline catabolism
    • Tanner, J. J. (2008). Structural biology of proline catabolism. Amino Acids 35, 719-730. doi: 10. 1007/s00726-008-0062-5.
    • (2008) Amino Acids , vol.35 , pp. 719-730
    • Tanner, J.J.1
  • 63
    • 33745662410 scopus 로고    scopus 로고
    • Reactive oxygen species signaling in response to pathogens
    • Torres, M. A., Jones, J. D., and Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141, 373-378. doi: 10. 1104/pp. 106. 079467.
    • (2006) Plant Physiol , vol.141 , pp. 373-378
    • Torres, M.A.1    Jones, J.D.2    Dangl, J.L.3
  • 64
    • 0142150051 scopus 로고    scopus 로고
    • Mitochondrial formation of reactive oxygen species
    • Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335-344. doi: 10. 1113/jphysiol. 2003. 049478.
    • (2003) J. Physiol , vol.552 , pp. 335-344
    • Turrens, J.F.1
  • 65
    • 53849114355 scopus 로고    scopus 로고
    • Proline accumulation in plants: A review
    • Verbruggen, N., and Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids35, 753-759. doi: 10. 1007/s00726-008-0061-6.
    • (2008) Amino Acids , vol.35 , pp. 753-759
    • Verbruggen, N.1    Hermans, C.2
  • 66
    • 79957694634 scopus 로고    scopus 로고
    • Proline metabolism and its implications for plant-environment interaction
    • Verslues, P. E., and Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8: e0140. doi: 10. 1199/tab. 0140.
    • (2010) Arabidopsis Book , vol.8
    • Verslues, P.E.1    Sharma, S.2
  • 67
    • 69949097909 scopus 로고    scopus 로고
    • Salicylic acid, a multifaceted hormone to combat disease
    • Vlot, A. C., Dempsey, D. M. A., and Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47, 177-206. doi: 10. 1146/annurev. phyto. 050908. 135202.
    • (2009) Annu. Rev. Phytopathol , vol.47 , pp. 177-206
    • Vlot, A.C.1    Dempsey, D.M.A.2    Klessig, D.F.3
  • 68
    • 33947448047 scopus 로고
    • Glutamic γ-semi aldehyde and Δ1-pyrroline-5-carboxylic acid, intermediates in the biosynthesis of proline
    • Vogel, H. J., and Davis, B. D. (1952). Glutamic γ-semi aldehyde and Δ1-pyrroline-5-carboxylic acid, intermediates in the biosynthesis of proline. J. Am. Chem. Soc. 74, 109-112. doi: 10. 1021/ja01121a025.
    • (1952) J. Am. Chem. Soc , vol.74 , pp. 109-112
    • Vogel, H.J.1    Davis, B.D.2
  • 69
    • 77953541273 scopus 로고    scopus 로고
    • Purification and characterization of Put1p from Saccharomyces cerevisiae
    • Wanduragala, S., Sanyal, N., Liang, X., and Becker, D. F. (2010). Purification and characterization of Put1p from Saccharomyces cerevisiae. Arch. Biochem. Biophys. 498, 136-142. doi: 10. 1016/j. abb. 2010. 04. 020.
    • (2010) Arch. Biochem. Biophys , vol.498 , pp. 136-142
    • Wanduragala, S.1    Sanyal, N.2    Liang, X.3    Becker, D.F.4
  • 70
  • 71
    • 84879108024 scopus 로고    scopus 로고
    • Prediction and verification of microRNAs related to proline accumulation under drought stress in potato
    • Yang, J., Zhang, N., Ma, C., Qu, Y., Si, H., and Wang, D. (2013). Prediction and verification of microRNAs related to proline accumulation under drought stress in potato. Comput. Biol. Chem. 46, 48-54. doi: 10. 1016/j. compbiolchem. 2013. 04. 006.
    • (2013) Comput. Biol. Chem , vol.46 , pp. 48-54
    • Yang, J.1    Zhang, N.2    Ma, C.3    Qu, Y.4    Si, H.5    Wang, D.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.