-
1
-
-
0020890115
-
Error detection and correction in quadratic residue number systems
-
Pnebla, Mexico, Aug.
-
J.V. Krogmeier and W.K. Jenkins, “Error detection and correction in quadratic residue number systems,” in Proc. 26th Midwest Symp. Circuit Syst., Pnebla, Mexico, Aug. 1983.
-
(1983)
Proc. 26th Midwest Symp. Circuit Syst.
-
-
Krogmeier, J.V.1
Jenkins, W.K.2
-
2
-
-
0021124691
-
Application of quadratic-like complex residue number system arithmetic to ultrasonics
-
Mar.
-
M.A. Soderstrand and G.D. Poe, “Application of quadratic-like complex residue number system arithmetic to ultrasonics,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. 2, Mar. 1984, pp. 282A.5.1-A.5.4.
-
(1984)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing
, vol.2
, pp. 282A.5.1-A.5.4
-
-
Soderstrand, M.A.1
Poe, G.D.2
-
3
-
-
0022197053
-
Complex digital signal processing using quadratic residue number systems
-
Mar.
-
R. Krishnan, G.A. Jullien, and W.C. Miller, “Complex digital signal processing using quadratic residue number systems,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Tampa, FL, vol. 2, Mar. 1985, pp. 764–767.
-
(1985)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Tampa, FL
, vol.2
, pp. 764-767
-
-
Krishnan, R.1
Jullien, G.A.2
Miller, W.C.3
-
4
-
-
84939374171
-
Fast Fourier transform processors using complex residue arithmetic
-
to be published in
-
A.M. Despain, A.M. Peterson, O.S. Rothans, and E. Wold, “Fast Fourier transform processors using complex residue arithmetic,” to be published in, J. Parallel Distributed Processing.
-
J. Parallel Distributed Processing.
-
-
Despain, A.M.1
Peterson, A.M.2
Rothans, O.S.3
Wold, E.4
-
5
-
-
84939341407
-
-
Mitre Corp. Rep., Bedford, MA, Feb.
-
J.H. Cozzens and L.A. Finkelstein, “Computing the discrete Fourier transform using residue number systems in a ring of algebraic integers,” Mitre Corp. Rep., Bedford, MA, Feb. 1984.
-
(1984)
Computing the discrete Fourier transform using residue number systems in a ring of algebraic integers
-
-
Cozzens, J.H.1
Finkelstein, L.A.2
-
6
-
-
84939365297
-
-
TDA Progress, Jet Propulsion Lab., Pasadena, CA, Rep., 42–81, Jan.-Mar.
-
T.K. Truong, J.J. Chang, I.S. Hsu, D.Y. Pei, and I.S. Reed, “Techniques for computing the discrete Fourier transform using the quadratic residue fermat number systems,” TDA Progress, Jet Propulsion Lab., Pasadena, CA, Rep., 42–81, Jan.-Mar. 1985.
-
(1985)
Techniques for computing the discrete Fourier transform using the quadratic residue fermat number systems
-
-
Truong, T.K.1
Chang, J.J.2
Hsu, I.S.3
Pei, D.Y.4
Reed, I.S.5
-
7
-
-
84939378394
-
VLSI residue multiplier modulo a fermat number
-
June 4-6, Urbana, IL
-
I.S. Reed, T.K. Truong, J.J. Chang, H.M. Shao, and I.S. Hsu, “VLSI residue multiplier modulo a fermat number,” in Proc. 7th Symp. Comput. Arithmet., June 4-6, 1985, Urbana, IL, pp. 203–206.
-
(1985)
Proc. 7th Symp. Comput. Arithmet.
, pp. 203-206
-
-
Reed, I.S.1
Truong, T.K.2
Chang, J.J.3
Shao, H.M.4
Hsu, I.S.5
-
8
-
-
0017010342
-
A simplified binary arithmetic for the fermat number transform
-
Oct.
-
L.M. Leibowitz, “A simplified binary arithmetic for the fermat number transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-24, pp. 356–359, Oct. 1976.
-
(1976)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.24 ASSP
, pp. 356-359
-
-
Leibowitz, L.M.1
-
9
-
-
0022270363
-
A single modulus complex ALU for signal processing
-
Oct.
-
F.J. Taylor, “A single modulus complex ALU for signal processing,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-33, Oct. 1985.
-
(1985)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.33 ASSP
-
-
Taylor, F.J.1
-
10
-
-
0038076370
-
-
Providence, RI: Contempory Mathematics, vol. 22, American Mathematical Society
-
J. Brillhart, D.H. Lehmar, J.L. Selfridge, B. Tuckerman, and S.S. Wagstaff, Jr., Factorizations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers. Providence, RI: Contempory Mathematics, vol. 22, American Mathematical Society, 1983.
-
(1983)
Factorizations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers.
-
-
Brillhart, J.1
Lehmar, D.H.2
Selfridge, J.L.3
Tuckerman, B.4
Wagstaff, S.S.5
|