메뉴 건너뛰기




Volumn 9, Issue 5, 2016, Pages 1913-1936

Estimation of Seismic Vulnerability Levels of Urban Structures with Multisensor Remote Sensing

Author keywords

Earthquakes; Istanbul; Landsat; machine learning; object based image analysis; RapidEye; seismic vulnerability assessment; support vector machines (SVM); TanDEM X

Indexed keywords

DATA HANDLING; EARTHQUAKES; REMOTE SENSING; RURAL AREAS; SEISMOLOGY; SUPPORT VECTOR MACHINES;

EID: 84936161448     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2015.2442584     Document Type: Article
Times cited : (38)

References (103)
  • 1
    • 77249115793 scopus 로고    scopus 로고
    • The seismic future of cities
    • R. Bilham, "The seismic future of cities," Bul. Earthquake Eng., vol. 7, pp. 839-887, 2009.
    • (2009) Bul. Earthquake Eng. , vol.7 , pp. 839-887
    • Bilham, R.1
  • 2
    • 84874893412 scopus 로고    scopus 로고
    • Global earthquake fatalities and population
    • T. L. Holzer and J. C. Savage, "Global earthquake fatalities and population," Earthquake Spectra, vol. 29, no. 1, pp. 155-175, 2013.
    • (2013) Earthquake Spectra , vol.29 , Issue.1 , pp. 155-175
    • Holzer, T.L.1    Savage, J.C.2
  • 3
    • 84883466728 scopus 로고    scopus 로고
    • Reducing earthquake risk
    • B. E. Tucker, "Reducing earthquake risk," Science, vol. 341, no. 6150, pp. 1070-1072, 2013.
    • (2013) Science , vol.341 , Issue.6150 , pp. 1070-1072
    • Tucker, B.E.1
  • 5
    • 84857061301 scopus 로고    scopus 로고
    • Estimating building inventory for rapid seismic vulnerability assessment: Towards an integrated approach based on multisource imaging
    • M. Wieland, M. Pittore, S. Parolai, J. Zschau, B. Moldobekov, and U. Begaliev, "Estimating building inventory for rapid seismic vulnerability assessment: Towards an integrated approach based on multisource imaging," Soil Dyn. Earthquake Eng., vol. 36, pp. 70-83, 2012.
    • (2012) Soil Dyn. Earthquake Eng. , vol.36 , pp. 70-83
    • Wieland, M.1    Pittore, M.2    Parolai, S.3    Zschau, J.4    Moldobekov, B.5    Begaliev, U.6
  • 6
    • 84880608412 scopus 로고    scopus 로고
    • Remote sensing contributing to assess earthquake risk: From a literature review towards a roadmap
    • C. Geiß and H. Taubenböck, "Remote sensing contributing to assess earthquake risk: From a literature review towards a roadmap," Nat. Hazards, vol. 68, pp. 7-48, 2013.
    • (2013) Nat. Hazards , vol.68 , pp. 7-48
    • Geiß, C.1    Taubenböck, H.2
  • 7
    • 84901014771 scopus 로고    scopus 로고
    • Macroscale vulnerability assessment of cities using association rule learning
    • I. Riedel, P. Guéguen, F. Dunand, and S. Cottaz, "Macroscale vulnerability assessment of cities using association rule learning," Seismol. Res. Lett., vol. 85, no. 2, pp. 295-305, 2014.
    • (2014) Seismol. Res. Lett. , vol.85 , Issue.2 , pp. 295-305
    • Riedel, I.1    Guéguen, P.2    Dunand, F.3    Cottaz, S.4
  • 8
    • 84925502713 scopus 로고    scopus 로고
    • Seismic vulnerability assessment of urban environments in moderate-to-low seismic hazard regions using association rule learning and support vector machine methods
    • I. Riedel, P. Guéguen, M. Dalla Mura, E. Pathier, T. Leduc, and J. Chanussot, "Seismic vulnerability assessment of urban environments in moderate-to-low seismic hazard regions using association rule learning and support vector machine methods," Nat. Hazards, vol. 76, pp. 1111-1141, 2014, doi: 10.1007/s11069-014-1538-0.
    • (2014) Nat. Hazards , vol.76 , pp. 1111-1141
    • Riedel, I.1    Guéguen, P.2    Dalla Mura, M.3    Pathier, E.4    Leduc, T.5    Chanussot, J.6
  • 9
    • 79951805099 scopus 로고    scopus 로고
    • Assessing building vulnerability using synergistically remote sensing and civil engineering
    • A. Kreck, M. Rumor, S. Zlatanova, and E. Fendel, Eds. New York, NY, USA: Taylor & Francis
    • H. Taubenböck et al., "Assessing building vulnerability using synergistically remote sensing and civil engineering," in Urban and Regional Data Management, A. Kreck, M. Rumor, S. Zlatanova, and E. Fendel, Eds. New York, NY, USA: Taylor & Francis, 2009, pp. 287-300.
    • (2009) Urban and Regional Data Management , pp. 287-300
    • Taubenböck, H.1
  • 10
    • 85027954255 scopus 로고    scopus 로고
    • Vulnerability study on a large industrial area using satellite remotely sensed images
    • B. Borzi et al., "Vulnerability study on a large industrial area using satellite remotely sensed images," Bull. Earthquake Eng., vol. 9, pp. 675-690, 2011.
    • (2011) Bull. Earthquake Eng. , vol.9 , pp. 675-690
    • Borzi, B.1
  • 11
    • 84926379871 scopus 로고    scopus 로고
    • An integrated method combining remote sensing data and local knowledge for the large-scale estimation of seismic loss risks to buildings in the context of rapid socioeconomic growth: A case study in Tangshan, China
    • G. Su et al., "An integrated method combining remote sensing data and local knowledge for the large-scale estimation of seismic loss risks to buildings in the context of rapid socioeconomic growth: A case study in Tangshan, China," Remote Sens., vol. 7, no. 3, pp. 2543-2601, 2015.
    • (2015) Remote Sens. , vol.7 , Issue.3 , pp. 2543-2601
    • Su, G.1
  • 12
    • 84857742587 scopus 로고    scopus 로고
    • Active and passive remote sensing for supporting the evaluation of the urban seismic vulnerability
    • F. Borfecchia et al., "Active and passive remote sensing for supporting the evaluation of the urban seismic vulnerability," Ital. J. Remote Sens., vol. 42, pp. 129-141, 2009.
    • (2009) Ital. J. Remote Sens. , vol.42 , pp. 129-141
    • Borfecchia, F.1
  • 13
    • 84968925590 scopus 로고    scopus 로고
    • Seismic vulnerability assessment using support vector machine classification for remote sensing and in-situ data
    • Lisbon, Portugal, Sep. 24-28 [Online]
    • P. Matsuka, E. Pathier, P. Guéguen, and J. Chanussot, "Seismic vulnerability assessment using support vector machine classification for remote sensing and in-situ data," in Proc. 15th World Conf. Earthquake Eng., Lisbon, Portugal, Sep. 24-28, 2012 [Online]. Available: http://www.iitk.ac.in/nicee/wcee/article/WCEE2012-5147.pdf
    • (2012) Proc. 15th World Conf. Earthquake Eng.
    • Matsuka, P.1    Pathier, E.2    Guéguen, P.3    Chanussot, J.4
  • 14
    • 84873141250 scopus 로고    scopus 로고
    • A support vector regression approach for building seismic vulnerability assessment and evaluation from remote sensing and in-situ data
    • Munich, Germany, Jul. 22-27
    • P. Matsuka, J. Chanussot, E. Pathier, and P. Guéguen, "A support vector regression approach for building seismic vulnerability assessment and evaluation from remote sensing and in-situ data," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Munich, Germany, Jul. 22-27, 2012, pp. 7533-7536.
    • (2012) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 7533-7536
    • Matsuka, P.1    Chanussot, J.2    Pathier, E.3    Guéguen, P.4
  • 16
    • 84937951370 scopus 로고    scopus 로고
    • Estimation of seismic buildings structural types using multi-sensor remote sensing and machine learning techniques
    • C. Geiß et al., "Estimation of seismic buildings structural types using multi-sensor remote sensing and machine learning techniques," ISPRS J. Photogramm. Remote Sens., vol. 104, pp. 175-188, 2015.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.104 , pp. 175-188
    • Geiß, C.1
  • 17
    • 85008058318 scopus 로고    scopus 로고
    • Monitoring urban structure types as spatial indicators with CIR aerial photographs for a more effective urban environmental management
    • Jun.
    • E. Banzhaf and R. Höfer, "Monitoring urban structure types as spatial indicators with CIR aerial photographs for a more effective urban environmental management," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 1, no. 2, pp. 129-138, Jun. 2008.
    • (2008) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.1 , Issue.2 , pp. 129-138
    • Banzhaf, E.1    Höfer, R.2
  • 18
    • 84858336613 scopus 로고    scopus 로고
    • Urban structure type characterization using hyperspectral remote sensing and height information
    • U. Heiden, W. Heldens, S. Roessner, K. Segl, T. Esch, and A. Mueller, "Urban structure type characterization using hyperspectral remote sensing and height information," Landsc. Urban Plann., vol. 105, pp. 361-375, 2012.
    • (2012) Landsc. Urban Plann. , vol.105 , pp. 361-375
    • Heiden, U.1    Heldens, W.2    Roessner, S.3    Segl, K.4    Esch, T.5    Mueller, A.6
  • 19
    • 0034610153 scopus 로고    scopus 로고
    • Assessing the environmental performance of land cover types for urban planning
    • S. Pauleit and F. Duhme, "Assessing the environmental performance of land cover types for urban planning," Landscape Urban Plann., vol. 52, pp. 1-20, 2000.
    • (2000) Landscape Urban Plann. , vol.52 , pp. 1-20
    • Pauleit, S.1    Duhme, F.2
  • 20
    • 70449451892 scopus 로고    scopus 로고
    • Integrative assessment of informal settlements using VHR remote sensing data-The Delhi case study
    • Sep.
    • S. Niebergall, A. Loew, and W. Mauser, "Integrative assessment of informal settlements using VHR remote sensing data-The Delhi case study," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 3, no. 1, pp. 193-205, Sep. 2008.
    • (2008) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.3 , Issue.1 , pp. 193-205
    • Niebergall, S.1    Loew, A.2    Mauser, W.3
  • 21
    • 70350143362 scopus 로고    scopus 로고
    • Urban structuring using multisensoral remote sensing data: By the example of the German cities Cologne and Dresden
    • Shanghai, China
    • M. Wurm, H. Taubenböck, A. Roth, and S. Dech, "Urban structuring using multisensoral remote sensing data: By the example of the German cities Cologne and Dresden," in Proc. Urban Remote Sens. Event, Shanghai, China, 2009, pp. 1-8.
    • (2009) Proc. Urban Remote Sens. Event , pp. 1-8
    • Wurm, M.1    Taubenböck, H.2    Roth, A.3    Dech, S.4
  • 22
    • 79957637804 scopus 로고    scopus 로고
    • Understanding heterogeneity in metropolitan India: The added value of remote sensing data for analyzing sub-standard residential areas
    • I. Baud, M. Kuffer, K. Pfeffer, R. Sliuzas, and S. Karuppannan, "Understanding heterogeneity in metropolitan India: The added value of remote sensing data for analyzing sub-standard residential areas," Int. J. Appl. Earth Observ. Geoinf., vol. 12, pp. 359-374, 2010.
    • (2010) Int. J. Appl. Earth Observ. Geoinf. , vol.12 , pp. 359-374
    • Baud, I.1    Kuffer, M.2    Pfeffer, K.3    Sliuzas, R.4    Karuppannan, S.5
  • 23
    • 34648825012 scopus 로고    scopus 로고
    • Automating the built-up process of feature-based fuzzy logic models for the identification of urban biotopes from hyperspectral remote sensing data
    • Paris, France
    • M. Bochow, K. Segl, and H. Kaufmann, "Automating the built-up process of feature-based fuzzy logic models for the identification of urban biotopes from hyperspectral remote sensing data," in Proc. Urban Remote Sens. Joint Event, Paris, France, 2007, pp. 1-8.
    • (2007) Proc. Urban Remote Sens. Joint Event , pp. 1-8
    • Bochow, M.1    Segl, K.2    Kaufmann, H.3
  • 24
    • 84873141670 scopus 로고    scopus 로고
    • Supporting urban micro climate modelling with airborne hyperspectral data
    • Munich, Germany, Jul. 23-27
    • W. Heldens, T. Esch, and U. Heiden, "Supporting urban micro climate modelling with airborne hyperspectral data," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Munich, Germany, Jul. 23-27, 2012, pp. 1598-1601.
    • (2012) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 1598-1601
    • Heldens, W.1    Esch, T.2    Heiden, U.3
  • 25
    • 84864742679 scopus 로고    scopus 로고
    • Classification of local climate zones based on multiple earth observation data
    • Aug.
    • B. Bechtel and C. Daneke, "Classification of local climate zones based on multiple earth observation data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 4, pp. 1191-1202, Aug. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.4 , pp. 1191-1202
    • Bechtel, B.1    Daneke, C.2
  • 26
    • 33645859888 scopus 로고    scopus 로고
    • Potential of highresolution satellite data in the context of vulnerability of buildings
    • M. Mueller, K. Segl, U. Heiden, and H. Kaufmann, "Potential of highresolution satellite data in the context of vulnerability of buildings," Nat. Hazards, vol. 38, pp. 247-258, 2006.
    • (2006) Nat. Hazards , vol.38 , pp. 247-258
    • Mueller, M.1    Segl, K.2    Heiden, U.3    Kaufmann, H.4
  • 27
    • 84880623404 scopus 로고    scopus 로고
    • Towards a rapid probabilistic seismic vulnerability assessment using satellite and ground-based remote sensing
    • M. Pittore and M. Wieland, "Towards a rapid probabilistic seismic vulnerability assessment using satellite and ground-based remote sensing," Nat. Hazards, vol. 68, pp. 115-145, 2013.
    • (2013) Nat. Hazards , vol.68 , pp. 115-145
    • Pittore, M.1    Wieland, M.2
  • 28
    • 0027658896 scopus 로고
    • A review on image segmentation techniques
    • R. Pal and K. Pal, "A review on image segmentation techniques," Pattern Recognit., vol. 26, no. 9, pp. 1277-1294, 1993.
    • (1993) Pattern Recognit. , vol.26 , Issue.9 , pp. 1277-1294
    • Pal, R.1    Pal, K.2
  • 29
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • T. Blaschke, "Object based image analysis for remote sensing," ISPRS J. Photogramm. Remote Sens., vol. 65, pp. 2-16, 2010.
    • (2010) ISPRS J. Photogramm. Remote Sens. , vol.65 , pp. 2-16
    • Blaschke, T.1
  • 30
    • 44649165024 scopus 로고    scopus 로고
    • Statistical pattern recognition in remote sensing
    • C. H. Chen and P.-G. P. Ho, "Statistical pattern recognition in remote sensing," Pattern Recognit., vol. 41, no. 9, pp. 2731-2741, 2008.
    • (2008) Pattern Recognit. , vol.41 , Issue.9 , pp. 2731-2741
    • Chen, C.H.1    Ho, P.-G.P.2
  • 31
    • 85032751634 scopus 로고    scopus 로고
    • Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
    • Jan.
    • G. Camps-Valls, D. Tuia, L. Bruzzone, and J. A. Benediktsson, "Advances in hyperspectral image classification: Earth monitoring with statistical learning methods," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 45-54, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 45-54
    • Camps-Valls, G.1    Tuia, D.2    Bruzzone, L.3    Benediktsson, J.A.4
  • 32
    • 34548597627 scopus 로고    scopus 로고
    • An approach for the classification of urban building structures based on discriminant analysis techniques
    • S. Steiniger, T. Lange, D. Burghardt, and R.Weibel, "An approach for the classification of urban building structures based on discriminant analysis techniques," Trans. GIS, vol. 12, no. 1, pp. 31-59, 2008.
    • (2008) Trans. GIS , vol.12 , Issue.1 , pp. 31-59
    • Steiniger, S.1    Lange, T.2    Burghardt, D.3    Weibel, R.4
  • 34
    • 35649022726 scopus 로고    scopus 로고
    • TanDEM-X: A satellite formation for high-resolution SAR interferometry
    • Nov.
    • G. Krieger et al., "TanDEM-X: A satellite formation for high-resolution SAR interferometry," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 11, pp. 3317-3341, Nov. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.11 , pp. 3317-3341
    • Krieger, G.1
  • 35
    • 15944374937 scopus 로고    scopus 로고
    • NASA's global orthorectified Landsat data set
    • C. J. Tucker, "NASA's global orthorectified Landsat data set," Photogramm. Eng. Remote Sens., vol. 70, pp. 313-322, 2004.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , pp. 313-322
    • Tucker, C.J.1
  • 36
    • 77954541218 scopus 로고    scopus 로고
    • [Online]. accessed on July 10, 2014
    • TurkStat. (2014). Turkish Statistical Institute [Online]. Available: http://rapor.tuik.gov.tr/reports/rwservlet?adnksdb2&ENVID=adnksdb2Env& report=wa-buyukbelediye.RDF&p-il1=34&p-kod=2&p-yil=2013&p- dil=1&desformat=html, accessed on July 10, 2014.
    • (2014) Turkish Statistical Institute
    • TurkStat1
  • 37
    • 84880579226 scopus 로고    scopus 로고
    • Issues with the earthquake vulnerability of Istanbul
    • E. Cakti, "Issues with the earthquake vulnerability of Istanbul," Nat. Hazards, vol. 68, no. 1, pp. 227-228, 2013.
    • (2013) Nat. Hazards , vol.68 , Issue.1 , pp. 227-228
    • Cakti, E.1
  • 38
    • 0033508210 scopus 로고    scopus 로고
    • Assessment of earthquake hazard in Turkey and neighboring regions
    • M. Erdik, Y. A. Biro, T. Onur, K. Sesetyan, and G. Birgoren, "Assessment of earthquake hazard in Turkey and neighboring regions," Ann. Geofis., vol. 42, no. 6, pp. 1125-1138, 1999.
    • (1999) Ann. Geofis. , vol.42 , Issue.6 , pp. 1125-1138
    • Erdik, M.1    Biro, Y.A.2    Onur, T.3    Sesetyan, K.4    Birgoren, G.5
  • 39
    • 0030797184 scopus 로고    scopus 로고
    • Progressive failure on the North Anatolian Fault since 1939 by earthquake stress triggering
    • R. S. Stein, A. A. Barka, and J. H. Dieterich, "Progressive failure on the North Anatolian Fault since 1939 by earthquake stress triggering," Geophys. J. Int., vol. 128, pp. 594-604, 1997.
    • (1997) Geophys. J. Int. , vol.128 , pp. 594-604
    • Stein, R.S.1    Barka, A.A.2    Dieterich, J.H.3
  • 40
    • 4644258562 scopus 로고    scopus 로고
    • Recalculated probability of M = 7 earthquakes beneath the Sea of Marmara, Turkey
    • [Online]
    • T. Parsons, "Recalculated probability of M = 7 earthquakes beneath the Sea of Marmara, Turkey," J. Geophys. Res., vol. 109, B05304, 2004 [Online]. Available: https://profile.usgs.gov/myscience/upload-folder/ci2010May25175655426802003JB002667.pdf
    • (2004) J. Geophys. Res. , vol.109 , pp. B05304
    • Parsons, T.1
  • 41
    • 84878372022 scopus 로고    scopus 로고
    • Urban vegetation classification: Benefits of multitemporal RapidEye satellite data
    • J. Tigges, T. Lakes, and P. Hostert, "Urban vegetation classification: Benefits of multitemporal RapidEye satellite data," Remote Sens. Environ., vol. 136, pp. 66-75, 2013.
    • (2013) Remote Sens. Environ. , vol.136 , pp. 66-75
    • Tigges, J.1    Lakes, T.2    Hostert, P.3
  • 42
    • 84859427372 scopus 로고    scopus 로고
    • Sentinel-2: ESA's optical high-resolution mission for GMES operational services
    • M. Drusch et al., "Sentinel-2: ESA's optical high-resolution mission for GMES operational services," Remote Sens. Environ., vol. 120, pp. 25-36, 2012.
    • (2012) Remote Sens. Environ. , vol.120 , pp. 25-36
    • Drusch, M.1
  • 43
    • 84865406893 scopus 로고    scopus 로고
    • The next Landsat satellite: The Landsat data continuity mission
    • J. R. Irons, J. L. Dwyer, and J. A. Barsi, "The next Landsat satellite: The Landsat data continuity mission," Remote Sens. Environ., vol. 122, pp. 11-21, 2012.
    • (2012) Remote Sens. Environ. , vol.122 , pp. 11-21
    • Irons, J.R.1    Dwyer, J.L.2    Barsi, J.A.3
  • 45
    • 44149092754 scopus 로고    scopus 로고
    • Review of the development of the capacity spectrum method
    • S. A. Freeman, "Review of the development of the capacity spectrum method," J. Earthquake Technol., vol. 41, no. 1, pp. 1-13, 2004.
    • (2004) J. Earthquake Technol. , vol.41 , Issue.1 , pp. 1-13
    • Freeman, S.A.1
  • 47
    • 29244454304 scopus 로고    scopus 로고
    • Atmospheric/topographic correction for satellite imagery
    • [Online]
    • R. Richter, Atmospheric/Topographic Correction for Satellite Imagery, ATCOR-2/3 User Guide, Version 7.0 BETA, 2008 [Online]. Available: http://www.dlr.de/eoc/Portaldata/60/Resources/dokumente/5-tech-mod/atcor3-manual-2012.pdf
    • (2008) ATCOR-2/3 User Guide, Version 7.0 BETA
    • Richter, R.1
  • 48
    • 84886588451 scopus 로고    scopus 로고
    • Urban footprint processor-Fully automated processing chain generating settlement masks from global data of the TanDEM-X mission
    • Nov.
    • T. Esch et al., "Urban footprint processor-Fully automated processing chain generating settlement masks from global data of the TanDEM-X mission," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 6, pp. 1617-1621, Nov. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.6 , pp. 1617-1621
    • Esch, T.1
  • 50
    • 84926300319 scopus 로고    scopus 로고
    • Normalization of TanDEM-X DSM data in urban environments with morphological filters
    • Aug.
    • C. Geiß, M. Wurm, M. Breunig, A. Felbier, and H. Taubenböck, "Normalization of TanDEM-X DSM data in urban environments with morphological filters," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 8, pp. 4348-4362, Aug. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.8 , pp. 4348-4362
    • Geiß, C.1    Wurm, M.2    Breunig, M.3    Felbier, A.4    Taubenböck, H.5
  • 51
    • 0014432211 scopus 로고
    • A two-dimensional interpolation function for irregularlyspaced data
    • Aug. 27-29
    • D. Shepard, "A two-dimensional interpolation function for irregularlyspaced data," in Proc. 23rd ACM Nat. Conf. (ACM'68), Aug. 27-29, 1968, pp. 517-524.
    • (1968) Proc. 23rd ACM Nat. Conf. (ACM'68) , pp. 517-524
    • Shepard, D.1
  • 52
    • 0042421792 scopus 로고    scopus 로고
    • Spatial metrics and image texture for mapping urban land use
    • M. Herold, X. Liu, and K. Clarke, "Spatial metrics and image texture for mapping urban land use," Photogramm. Eng. Remote Sens., vol. 69, pp. 991-1001, 2003.
    • (2003) Photogramm. Eng. Remote Sens. , vol.69 , pp. 991-1001
    • Herold, M.1    Liu, X.2    Clarke, K.3
  • 53
    • 1642487678 scopus 로고    scopus 로고
    • Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information
    • U. C. Benz, P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen, "Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information," ISPRS J. Photogramm. Remote Sens., vol. 58, no. 3-4, pp. 239-258, 2004.
    • (2004) ISPRS J. Photogramm. Remote Sens. , vol.58 , Issue.3-4 , pp. 239-258
    • Benz, U.C.1    Hofmann, P.2    Willhauck, G.3    Lingenfelder, I.4    Heynen, M.5
  • 54
    • 47849099239 scopus 로고    scopus 로고
    • Improvement of image segmentation accuracy based on multiscale optimization procedure
    • Jul.
    • T. Esch, M. Thiel, M. Bock, A. Roth, and S. Dech, "Improvement of image segmentation accuracy based on multiscale optimization procedure," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 3, pp. 463-467, Jul. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.3 , pp. 463-467
    • Esch, T.1    Thiel, M.2    Bock, M.3    Roth, A.4    Dech, S.5
  • 55
    • 33747105856 scopus 로고    scopus 로고
    • Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation
    • G. M. Espindola, G. Camara, I. A. Reis, L. S. Bins, and A. M. Monteiro, "Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation," Int. J. Remote Sens., vol. 27, no. 14, pp. 3035-3040, 2006.
    • (2006) Int. J. Remote Sens. , vol.27 , Issue.14 , pp. 3035-3040
    • Espindola, G.M.1    Camara, G.2    Reis, I.A.3    Bins, L.S.4    Monteiro, A.M.5
  • 56
    • 33747616217 scopus 로고    scopus 로고
    • Finding the right pixel size
    • T. Hengl, "Finding the right pixel size," Comput. Geosci., vol. 32, pp. 1283-1298, 2006.
    • (2006) Comput. Geosci. , vol.32 , pp. 1283-1298
    • Hengl, T.1
  • 57
    • 82155192323 scopus 로고    scopus 로고
    • Segment optimization and data-driven thresholding for knowledgebased landslide detection by object-based image analysis
    • Dec.
    • T. R. Martha, N. Kerle, C. J. van Westen, V. Jetten, and K. V. Kumar, "Segment optimization and data-driven thresholding for knowledgebased landslide detection by object-based image analysis," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12, pp. 4928-4943, Dec. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.12 , pp. 4928-4943
    • Martha, T.R.1    Kerle, N.2    Van Westen, C.J.3    Jetten, V.4    Kumar, K.V.5
  • 58
    • 79959738208 scopus 로고    scopus 로고
    • Object-oriented change detection for landslide rapid mapping
    • Jul.
    • P. Lu, A. Stumpf, N. Kerle, and N. Casagli, "Object-oriented change detection for landslide rapid mapping," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 701-705, Jul. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.4 , pp. 701-705
    • Lu, P.1    Stumpf, A.2    Kerle, N.3    Casagli, N.4
  • 59
    • 0015680481 scopus 로고
    • Textural features for image classification
    • Nov.
    • R. Haralick, K. Shanmugam, and I. Dinstein, "Textural features for image classification," IEEE Trans. Syst. Man Cybern., vol. SMC-3, no. 6, pp. 610-621, Nov. 1973.
    • (1973) IEEE Trans. Syst. Man Cybern. , vol.SMC-3 , Issue.6 , pp. 610-621
    • Haralick, R.1    Shanmugam, K.2    Dinstein, I.3
  • 60
    • 64549105242 scopus 로고    scopus 로고
    • A neural network approach using multi-scale textural metrics from very high resolution panchromatic imagery for urban land-use classification
    • F. Pacifici, M. Chini, and W. Emery, "A neural network approach using multi-scale textural metrics from very high resolution panchromatic imagery for urban land-use classification," Remote Sens. Environ., vol. 113, no. 6, pp. 1276-1292, 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.6 , pp. 1276-1292
    • Pacifici, F.1    Chini, M.2    Emery, W.3
  • 62
    • 33748331356 scopus 로고    scopus 로고
    • A multilevel context-based system for classification of very high spatial resolution images
    • Sep.
    • L. Bruzzone and L. Carlin, "A multilevel context-based system for classification of very high spatial resolution images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 9, pp. 2587-2600, Sep. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.9 , pp. 2587-2600
    • Bruzzone, L.1    Carlin, L.2
  • 63
    • 84879561232 scopus 로고    scopus 로고
    • Classifying a high resolution image of an urban area using super-object information
    • B. Johnson and Z. Xie, "Classifying a high resolution image of an urban area using super-object information," ISPRS J. Photogramm. Remote Sens., vol. 83, pp. 40-49, 2013.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.83 , pp. 40-49
    • Johnson, B.1    Xie, Z.2
  • 64
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan.
    • G. F. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. 14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 65
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of relief
    • I. Kononenko, "Estimating attributes: Analysis and extensions of relief," in Proc. Eur. Conf. Mach. Learn., 1994, pp. 171-182.
    • (1994) Proc. Eur. Conf. Mach. Learn. , pp. 171-182
    • Kononenko, I.1
  • 67
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • M. Robnik-Šikonja and I. Kononenko, "Theoretical and empirical analysis of ReliefF and RReliefF," Mach. Learn. J., vol. 53, no. 1-2, pp. 23-69, 2003.
    • (2003) Mach. Learn. J. , vol.53 , Issue.1-2 , pp. 23-69
    • Robnik-Šikonja, M.1    Kononenko, I.2
  • 69
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges, "A tutorial on support vector machines for pattern recognition," Data Mining Knowl. Discovery, vol. 2, pp. 121-167, 1998.
    • (1998) Data Mining Knowl. Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 70
    • 81355161463 scopus 로고    scopus 로고
    • Settlement detection and impervious surface estimation in the Mekong Delta using optical and SAR remote sensing data
    • P. Leinenkugel, T. Esch, and C. Künzer, "Settlement detection and impervious surface estimation in the Mekong Delta using optical and SAR remote sensing data," Remote Sens. Environ., vol. 115, pp. 3007-3019, 2011.
    • (2011) Remote Sens. Environ. , vol.115 , pp. 3007-3019
    • Leinenkugel, P.1    Esch, T.2    Künzer, C.3
  • 71
    • 84863479380 scopus 로고    scopus 로고
    • Supervised change detection in VHR images using contextual information and support vector machines
    • M. Volpi, D. Tuia, F. Bovolo, M. Kanevski, and L. Bruzzone, "Supervised change detection in VHR images using contextual information and support vector machines," Int. J. Appl. Earth Observ. Geoinf., vol. 20, pp. 77-85, 2013.
    • (2013) Int. J. Appl. Earth Observ. Geoinf. , vol.20 , pp. 77-85
    • Volpi, M.1    Tuia, D.2    Bovolo, F.3    Kanevski, M.4    Bruzzone, L.5
  • 75
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • B. Schölkopf and A. J. Smola, "A tutorial on support vector regression," Statist. Comput., vol. 14, pp. 199-222, 2004.
    • (2004) Statist. Comput. , vol.14 , pp. 199-222
    • Schölkopf, B.1    Smola, A.J.2
  • 76
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 77
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Jun.
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 79
  • 81
    • 77954757586 scopus 로고    scopus 로고
    • Semisupervised one-class support vector machines for classification of remote sensing data
    • Aug.
    • J. Muñoz-Marí, F. Bovolo, L. Gomez-Chova, L. Bruzzone, and G. Camp-Valls, "Semisupervised one-class support vector machines for classification of remote sensing data," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 8, pp. 3188-3197, Aug. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.8 , pp. 3188-3197
    • Muñoz-Marí, J.1    Bovolo, F.2    Gomez-Chova, L.3    Bruzzone, L.4    Camp-Valls, G.5
  • 83
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • G. M. Foody, "Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy," Photogramm. Eng. Remote Sens., vol. 70, pp. 627-633, 2004.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 84
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Mar.
    • C. W. Hsu and C. J. Lin, "A comparison of methods for multi-class support vector machines," IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 415-425, Mar. 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 86
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semisupervised classification of remote-sensing images
    • Nov.
    • L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive SVM for semisupervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363-3373, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 88
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Jun.
    • D. Tuia, L. Copa, M. Kanevski, and J. Munoz-Mari, "A survey of active learning algorithms for supervised remote sensing image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 606-617, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 606-617
    • Tuia, D.1    Copa, L.2    Kanevski, M.3    Munoz-Mari, J.4
  • 89
    • 84898598578 scopus 로고    scopus 로고
    • Active learning in the spatial domain for remote sensing image classification
    • May
    • A. Stumpf, N. Lachiche, J. P. Malet, N. Kerle, and A. Puissant, "Active learning in the spatial domain for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2492-2507, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2492-2507
    • Stumpf, A.1    Lachiche, N.2    Malet, J.P.3    Kerle, N.4    Puissant, A.5
  • 90
    • 84892437309 scopus 로고    scopus 로고
    • SVM active learning approach for image classification using spatial information
    • Apr.
    • E. Pasolli, F. Melgani, D. Tuia, F. Pacifici, and W. J. Emery, "SVM active learning approach for image classification using spatial information," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 4, pp. 2217-2233, Apr. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.4 , pp. 2217-2233
    • Pasolli, E.1    Melgani, F.2    Tuia, D.3    Pacifici, F.4    Emery, W.J.5
  • 91
    • 84890989678 scopus 로고    scopus 로고
    • Definition of effective training sets for supervised classification of remote sensing images by a novel cost-sensitive active learning method
    • Feb.
    • B. Demir, L. Minello, and L. Bruzzone, "Definition of effective training sets for supervised classification of remote sensing images by a novel cost-sensitive active learning method," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 1272-1284, Feb. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.2 , pp. 1272-1284
    • Demir, B.1    Minello, L.2    Bruzzone, L.3
  • 92
    • 79957460116 scopus 로고    scopus 로고
    • Using active learning to adapt remote sensing image classifiers
    • D. Tuia, E. Pasolli, and W. J. Emery, "Using active learning to adapt remote sensing image classifiers," Remote Sens. Environ., vol. 115, pp. 2232-2242, 2011.
    • (2011) Remote Sens. Environ. , vol.115 , pp. 2232-2242
    • Tuia, D.1    Pasolli, E.2    Emery, W.J.3
  • 93
    • 84927598104 scopus 로고    scopus 로고
    • Analysis of uncertainty in multitemporal object-based classification
    • F. Löw, P. Knöfel, and C. Conrad, "Analysis of uncertainty in multitemporal object-based classification," ISPRS J. Photogramm. Remote Sens., vol. 105, pp. 91-106, 2015.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.105 , pp. 91-106
    • Löw, F.1    Knöfel, P.2    Conrad, C.3
  • 94
    • 84928683441 scopus 로고    scopus 로고
    • Focus maps: A means of prioritizing data collection for efficient geo-risk management
    • M. Pittore, "Focus maps: A means of prioritizing data collection for efficient geo-risk management," Ann. Geophys., vol. 58, no. 1, S0107, 2015, doi: 10.4401/ag-6692.
    • (2015) Ann. Geophys. , vol.58 , Issue.1 , pp. S0107
    • Pittore, M.1
  • 95
    • 84894427964 scopus 로고    scopus 로고
    • Clustering-based ensembles for one-class classification
    • B. Krawczyk, M. Wozniak, and B. Cyganek, "Clustering-based ensembles for one-class classification," Inf. Sci., vol. 264, pp. 182-195, 2014.
    • (2014) Inf. Sci. , vol.264 , pp. 182-195
    • Krawczyk, B.1    Wozniak, M.2    Cyganek, B.3
  • 98
    • 83455181750 scopus 로고    scopus 로고
    • Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and-3
    • J. Verrelst et al., "Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and-3," Remote Sens. Environ., vol. 118, pp. 127-139, 2012.
    • (2012) Remote Sens. Environ. , vol.118 , pp. 127-139
    • Verrelst, J.1
  • 99
    • 84898072545 scopus 로고    scopus 로고
    • Performance evaluation of machine learning algorithms for urban pattern recognition from multi-spectral satellite images
    • M. Wieland and M. Pittore, "Performance evaluation of machine learning algorithms for urban pattern recognition from multi-spectral satellite images," Remote Sens., vol. 6, pp. 2912-2939, 2014.
    • (2014) Remote Sens. , vol.6 , pp. 2912-2939
    • Wieland, M.1    Pittore, M.2
  • 100
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik, "Support vector networks," Mach. Learn., vol. 20, pp. 273-297, 1995.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.