메뉴 건너뛰기




Volumn 60, Issue 14, 2015, Pages 5471-5496

A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities

Author keywords

FDG PET; lung metastases; MRI; outcome prediction; radiomics; soft tissue sarcoma; texture analysis

Indexed keywords

BIOLOGICAL ORGANS; DIAGNOSIS; FORECASTING; MAGNETIC RESONANCE IMAGING; PATHOLOGY; PATIENT TREATMENT; RISK ASSESSMENT; TISSUE; TUMORS; WAVELET TRANSFORMS;

EID: 84936085910     PISSN: 00319155     EISSN: 13616560     Source Type: Journal    
DOI: 10.1088/0031-9155/60/14/5471     Document Type: Article
Times cited : (756)

References (39)
  • 1
    • 84901946941 scopus 로고    scopus 로고
    • Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    • Aerts H J W L et al 2014 Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach Nat. Commun. 5 4006
    • (2014) Nat. Commun. , vol.5 , pp. 4006
    • Aerts, H.J.W.L.1
  • 2
    • 0024738619 scopus 로고
    • Textural features corresponding to textural properties
    • Amadasun M R 1989 Textural features corresponding to textural properties IEEE Trans. Syst. Man Cybern. 19 1264-74
    • (1989) IEEE Trans. Syst. Man Cybern. , vol.19 , pp. 1264-1274
    • Amadasun, M.R.1
  • 4
    • 0032890566 scopus 로고    scopus 로고
    • Multifactorial analysis of the survival of patients with distant metastasis arising from primary extremity sarcoma
    • Billingsley K G, Lewis J J, Leung D H Y, Casper E S, Woodruff J M and Brennan M F 1999 Multifactorial analysis of the survival of patients with distant metastasis arising from primary extremity sarcoma Cancer 85 389-95
    • (1999) Cancer , vol.85 , pp. 389-395
    • Billingsley, K.G.1    Lewis, J.J.2    Leung, D.H.Y.3    Casper, E.S.4    Woodruff, J.M.5    Brennan, M.F.6
  • 5
    • 21644445731 scopus 로고    scopus 로고
    • Soft tissue sarcoma: Advances in understanding and management
    • Brennan M F 2005 Soft tissue sarcoma: advances in understanding and management Surgeon 3 216-23
    • (2005) Surgeon , vol.3 , pp. 216-223
    • Brennan, M.F.1
  • 6
    • 0025585326 scopus 로고
    • Use of gray value distribution of run lengths for texture analysis
    • Chu A, Sehgal C and Greenleaf J 1990 Use of gray value distribution of run lengths for texture analysis Pattern Recognit. Lett. 11 415-9
    • (1990) Pattern Recognit. Lett. , vol.11 , pp. 415-419
    • Chu, A.1    Sehgal, C.2    Greenleaf, J.3
  • 7
    • 1242292423 scopus 로고    scopus 로고
    • Influence of MRI acquisition protocols and image intensity normalization methods on texture classification
    • Collewet G, Strzelecki M and Mariette F 2004 Influence of MRI acquisition protocols and image intensity normalization methods on texture classification Magn. Reson. Imaging 22 81-91
    • (2004) Magn. Reson. Imaging , vol.22 , pp. 81-91
    • Collewet, G.1    Strzelecki, M.2    Mariette, F.3
  • 8
    • 84872015239 scopus 로고    scopus 로고
    • Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy?
    • Cook G J R, Yip C, Siddique M, Goh V, Chicklore S, Roy A, Marsden P, Ahmad S and Landau D 2013 Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J. Nucl. Med. 54 19-26
    • (2013) J. Nucl. Med. , vol.54 , pp. 19-26
    • Cook, G.J.R.1    Yip, C.2    Siddique, M.3    Goh, V.4    Chicklore, S.5    Roy, A.6    Marsden, P.7    Ahmad, S.8    Landau, D.9
  • 9
    • 0026276969 scopus 로고
    • Image characterizations based on joint gray level-run length distributions
    • Dasarathy B and Holder E 1991 Image characterizations based on joint gray level-run length distributions Pattern Recogn. Lett. 12 497-502
    • (1991) Pattern Recogn. Lett. , vol.12 , pp. 497-502
    • Dasarathy, B.1    Holder, E.2
  • 10
    • 0037572347 scopus 로고    scopus 로고
    • CERR: A computational environment for radiotherapy research
    • Deasy J O, Blanco A I and Clark V H 2003 CERR: a computational environment for radiotherapy research Med. Phys. 30 979-85
    • (2003) Med. Phys. , vol.30 , pp. 979-985
    • Deasy, J.O.1    Blanco, A.I.2    Clark, V.H.3
  • 13
    • 59149105325 scopus 로고    scopus 로고
    • Exploring feature-based approaches in PET images for predicting cancer treatment outcomes
    • El Naqa I et al 2009 Exploring feature-based approaches in PET images for predicting cancer treatment outcomes Pattern Recogn. 42 1162-71
    • (2009) Pattern Recogn. , vol.42 , pp. 1162-1171
    • El Naqa, I.1
  • 14
    • 33846889320 scopus 로고    scopus 로고
    • Dose response explorer: An integrated open-source tool for exploring and modelling radiotherapy dose-volume outcome relationships
    • El Naqa I, Suneja G, Lindsay P E, Hope A J, Alaly J R, Vicic M, Bradley J D, Apte A and Deasy J O 2006 Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose-volume outcome relationships Phys. Med. Biol. 51 5719-35
    • (2006) Phys. Med. Biol. , vol.51 , Issue.22 , pp. 5719-5735
    • El Naqa, I.1    Suneja, G.2    Lindsay, P.E.3    Hope, A.J.4    Alaly, J.R.5    Vicic, M.6    Bradley, J.D.7    Apte, A.8    Deasy, J.O.9
  • 15
    • 18844398070 scopus 로고    scopus 로고
    • Permutation methods: A basis for exact inference
    • Ernst M D 2004 Permutation methods: a basis for exact inference Stat. Sci. 19 676-85
    • (2004) Stat. Sci. , vol.19 , pp. 676-685
    • Ernst, M.D.1
  • 17
    • 0001416258 scopus 로고
    • Texture analysis using gray level run lengths
    • Galloway M M 1975 Texture analysis using gray level run lengths Comput. Graph. Image Process. 4 172-9
    • (1975) Comput. Graph. Image Process. , vol.4 , pp. 172-179
    • Galloway, M.M.1
  • 19
    • 84920454196 scopus 로고    scopus 로고
    • FDG PET uptake characterization through texture analysis: Investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort
    • Hatt M et al 2015 FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort J. Nucl. Med. 56 38-44
    • (2015) J. Nucl. Med. , vol.56 , pp. 38-44
    • Hatt, M.1
  • 21
    • 84867139157 scopus 로고    scopus 로고
    • Radiomics: The process and the challenges
    • Kumar V et al 2012 Radiomics: the process and the challenges Magn. Reson. Imaging 30 1234-48
    • (2012) Magn. Reson. Imaging , vol.30 , pp. 1234-1248
    • Kumar, V.1
  • 22
    • 84857037061 scopus 로고    scopus 로고
    • Radiomics: Extracting more information from medical images using advanced feature analysis
    • Lambin P et al 2012 Radiomics: extracting more information from medical images using advanced feature analysis Eur. J. Cancer 48 441-6
    • (2012) Eur. J. Cancer , vol.48 , pp. 441-446
    • Lambin, P.1
  • 23
    • 84871609385 scopus 로고    scopus 로고
    • Predicting outcomes in radiation oncology-multifactorial decision support systems
    • Lambin P et al 2013 Predicting outcomes in radiation oncology-multifactorial decision support systems Nat. Rev. Clin. Oncol. 10 27-40
    • (2013) Nat. Rev. Clin. Oncol. , vol.10 , pp. 27-40
    • Lambin, P.1
  • 26
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • Lloyd S 1982 Least squares quantization in PCM IEEE Trans. Inform. Theory IT-28 129-37
    • (1982) IEEE Trans. Inform. Theory , vol.IT-28 , pp. 129-137
    • Lloyd, S.1
  • 27
    • 84857820489 scopus 로고    scopus 로고
    • Tumor heterogeneity and personalized medicine
    • Longo D L 2012 Tumor heterogeneity and personalized medicine New Engl. J. Med. 366 956-7
    • (2012) New Engl. J. Med. , vol.366 , pp. 956-957
    • Longo, D.L.1
  • 28
    • 84937350296 scopus 로고
    • Quantizing for minimum distortion
    • Max J 1960 Quantizing for minimum distortion IRE Trans. Inform. Theory 6 7-12
    • (1960) IRE Trans. Inform. Theory , vol.6 , pp. 7-12
    • Max, J.1
  • 30
    • 41449091519 scopus 로고    scopus 로고
    • Classifier performance prediction for computer-aided diagnosis using a limited dataset
    • Sahiner B, Chan H-P and Hadjiiski L 2008 Classifier performance prediction for computer-aided diagnosis using a limited dataset Med. Phys. 35 1559-70
    • (2008) Med. Phys. , vol.35 , pp. 1559-1570
    • Sahiner, B.1    Chan, H.-P.2    Hadjiiski, L.3
  • 32
    • 34250195010 scopus 로고    scopus 로고
    • Decoding global gene expression programs in liver cancer by noninvasive imaging
    • Segal E et al 2007 Decoding global gene expression programs in liver cancer by noninvasive imaging Nat. Biotechnol. 25 675-80
    • (2007) Nat. Biotechnol. , vol.25 , pp. 675-680
    • Segal, E.1
  • 36
    • 79952788113 scopus 로고    scopus 로고
    • Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer
    • Tixier F, Le Rest C C, Hatt M, Albarghach N, Pradier O, Metges J P, Corcos L and Visvikis D 2011 Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer J. Nucl. Med. 52 369-78
    • (2011) J. Nucl. Med. , vol.52 , pp. 369-378
    • Tixier, F.1    Le Rest, C.C.2    Hatt, M.3    Albarghach, N.4    Pradier, O.5    Metges, J.P.6    Corcos, L.7    Visvikis, D.8
  • 39
    • 80955178859 scopus 로고    scopus 로고
    • Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies
    • Van Velden F H P, Cheebsumon P, Yaqub M, Smit E F, Hoekstra O S, Lammertsma A A and Boellaard R 2011 Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies Eur. J. Nucl. Med. Mol. Imaging 38 1636-47
    • (2011) Eur. J. Nucl. Med. Mol. Imaging , vol.38 , pp. 1636-1647
    • Van Velden, F.H.P.1    Cheebsumon, P.2    Yaqub, M.3    Smit, E.F.4    Hoekstra, O.S.5    Lammertsma, A.A.6    Boellaard, R.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.