메뉴 건너뛰기




Volumn 37, Issue 10, 2014, Pages 761-764

Pharmacovigilance for a Revolving World: Prospects of Patient-Generated Data on the Internet

Author keywords

[No Author keywords available]

Indexed keywords

DRUG SURVEILLANCE PROGRAM; HUMAN; INFORMATION PROCESSING; INTERNET; PATIENT PARTICIPATION; PROCEDURES; UTILIZATION;

EID: 84934270864     PISSN: 01145916     EISSN: 11791942     Source Type: Journal    
DOI: 10.1007/s40264-014-0205-4     Document Type: Editorial
Times cited : (14)

References (21)
  • 1
    • 77949407113 scopus 로고    scopus 로고
    • The missing voice of patients in drug-safety reporting
    • PID: 20220181, COI: 1:CAS:528:DC%2BC3cXjt1yls7o%3D
    • Basch E. The missing voice of patients in drug-safety reporting. N Engl J Med. 2010;362(10):865–9.
    • (2010) N Engl J Med , vol.362 , Issue.10 , pp. 865-869
    • Basch, E.1
  • 2
    • 84890342084 scopus 로고    scopus 로고
    • Patient-reported outcome measures in safety event reporting: PROSPER consortium guidance
    • PID: 24092596
    • Banerjee A, Okun S, Edwards IR, et al. Patient-reported outcome measures in safety event reporting: PROSPER consortium guidance. Drug Saf. 2013;36(12):1129–49.
    • (2013) Drug Saf , vol.36 , Issue.12 , pp. 1129-1149
    • Banerjee, A.1    Okun, S.2    Edwards, I.R.3
  • 3
    • 79955778144 scopus 로고    scopus 로고
    • Accelerated clinical discovery using self-reported patient data collected online and a patient-matching algorithm
    • COI: 1:CAS:528:DC%2BC3MXltFyqt7c%3D
    • Wicks P, Vaughan TE, Massagli MP, Heywood J. Accelerated clinical discovery using self-reported patient data collected online and a patient-matching algorithm. Nat Biotech. 2011;29(5):411–4.
    • (2011) Nat Biotech , vol.29 , Issue.5 , pp. 411-414
    • Wicks, P.1    Vaughan, T.E.2    Massagli, M.P.3    Heywood, J.4
  • 4
    • 43749091268 scopus 로고    scopus 로고
    • Adverse drug reaction reporting by patients in The Netherlands: three years of experience
    • PID: 18484785
    • de Langen J, van Hunsel F, Passier A, den Berg L-V, van Grootheest K. Adverse drug reaction reporting by patients in The Netherlands: three years of experience. Drug Saf. 2008;31(6):515–24.
    • (2008) Drug Saf , vol.31 , Issue.6 , pp. 515-524
    • de Langen, J.1    van Hunsel, F.2    Passier, A.3    den Berg, L.-V.4    van Grootheest, K.5
  • 5
    • 84896847105 scopus 로고    scopus 로고
    • vigiGrade: a tool to identify well-documented individual case reports and highlight systematic data quality issues
    • PID: 24343765
    • Bergvall T, Norén GN, Lindquist M. vigiGrade: a tool to identify well-documented individual case reports and highlight systematic data quality issues. Drug Saf. 2014;37(1):65–77.
    • (2014) Drug Saf , vol.37 , Issue.1 , pp. 65-77
    • Bergvall, T.1    Norén, G.N.2    Lindquist, M.3
  • 6
    • 79952753182 scopus 로고    scopus 로고
    • Using Facebook to increase spontaneous reporting of adverse drug reactions
    • PID: 21417507
    • Knezevic MZ, Bivolarevic IC, Peric TS, Jankovic SM. Using Facebook to increase spontaneous reporting of adverse drug reactions. Drug Saf. 2011;34(4):351–2.
    • (2011) Drug Saf , vol.34 , Issue.4 , pp. 351-352
    • Knezevic, M.Z.1    Bivolarevic, I.C.2    Peric, T.S.3    Jankovic, S.M.4
  • 7
    • 79952770759 scopus 로고    scopus 로고
    • Social media and networks in pharmacovigilance: boon or bane?
    • PID: 21417499
    • Edwards IR, Lindquist M. Social media and networks in pharmacovigilance: boon or bane? Drug Saf. 2011;34(4):267–71.
    • (2011) Drug Saf , vol.34 , Issue.4 , pp. 267-271
    • Edwards, I.R.1    Lindquist, M.2
  • 8
    • 80051583646 scopus 로고    scopus 로고
    • Can social media benefit drug safety?
    • PID: 21830842
    • Franzen W. Can social media benefit drug safety? Drug Saf. 2011;34(9):793.
    • (2011) Drug Saf , vol.34 , Issue.9 , pp. 793
    • Franzen, W.1
  • 9
    • 84901857191 scopus 로고    scopus 로고
    • Digital drug safety surveillance: monitoring pharmaceutical products in Twitter
    • PID: 24777653, COI: 1:CAS:528:DC%2BC2cXmvFGht7w%3D
    • Freifeld CC, Brownstein JS, Menone CM, et al. Digital drug safety surveillance: monitoring pharmaceutical products in Twitter. Drug Saf. 2014;37(5):343–50.
    • (2014) Drug Saf , vol.37 , Issue.5 , pp. 343-350
    • Freifeld, C.C.1    Brownstein, J.S.2    Menone, C.M.3
  • 10
    • 84863556111 scopus 로고    scopus 로고
    • Predicting adverse drug events from personal health messages
    • PID: 22195073
    • Chee BW, Berlin R, Schatz B. Predicting adverse drug events from personal health messages. AMIA Annu Symp Proc. 2011;2011:217–26.
    • (2011) AMIA Annu Symp Proc , vol.2011 , pp. 217-226
    • Chee, B.W.1    Berlin, R.2    Schatz, B.3
  • 11
    • 84904857162 scopus 로고    scopus 로고
    • Toward enhanced pharmacovigilance using patient-generated data on the internet
    • PID: 24713590, COI: 1:STN:280:DC%2BC2cnhslyiuw%3D%3D
    • White RW, Harpaz R, Shah NH, DuMouchel W, Horvitz E. Toward enhanced pharmacovigilance using patient-generated data on the internet. Clin Pharmacol Ther. 2014;96(2):239–46. doi:10.1038/clpt.2014.77.
    • (2014) Clin Pharmacol Ther , vol.96 , Issue.2 , pp. 239-246
    • White, R.W.1    Harpaz, R.2    Shah, N.H.3    DuMouchel, W.4    Horvitz, E.5
  • 16
    • 84926426303 scopus 로고    scopus 로고
    • Zoo or Savannah? Choice of training ground for evidence-based pharmacovigilance. Drug Saf
    • Norén GN, Caster O, Juhlin K, Lindquist M. Zoo or Savannah? Choice of training ground for evidence-based pharmacovigilance. Drug Saf. Epub 9 Jul 2014. doi:10.1007/s40264-014-0198-z.
    • (2014) Epub , pp. 9
    • Norén, G.N.1    Caster, O.2    Juhlin, K.3    Lindquist, M.4
  • 17
    • 84896056107 scopus 로고    scopus 로고
    • The parable of Google Flu: traps in big data analysis
    • PID: 24626916, COI: 1:CAS:528:DC%2BC2cXltVylsrs%3D
    • Lazer D, Kennedy R, King G, Vespignani A. The parable of Google Flu: traps in big data analysis. Science. 2014;343(6176):1203–5.
    • (2014) Science , vol.343 , Issue.6176 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 18
    • 23644441917 scopus 로고    scopus 로고
    • What are the real lessons from Vioxx?
    • PID: 16048352, COI: 1:CAS:528:DC%2BD2MXhtVWjsLjF
    • Edwards IR. What are the real lessons from Vioxx? Drug Saf. 2005;28(8):651–8.
    • (2005) Drug Saf , vol.28 , Issue.8 , pp. 651-658
    • Edwards, I.R.1
  • 19
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • PID: 19020500, COI: 1:CAS:528:DC%2BD1MXht1ehurk%3D
    • Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009;457(7232):1012–4.
    • (2009) Nature , vol.457 , Issue.7232 , pp. 1012-1014
    • Ginsberg, J.1    Mohebbi, M.H.2    Patel, R.S.3    Brammer, L.4    Smolinski, M.S.5    Brilliant, L.6
  • 20
    • 53849138066 scopus 로고    scopus 로고
    • VigiBase, the WHO Global ICSR Database System: basic facts
    • Lindquist M. VigiBase, the WHO Global ICSR Database System: basic facts. Drug Inf J. 2008;42(5):409–19.
    • (2008) Drug Inf J , vol.42 , Issue.5 , pp. 409-419
    • Lindquist, M.1
  • 21
    • 34147207121 scopus 로고    scopus 로고
    • Duplicate detection in adverse drug reaction surveillance
    • Norén GN, Orre R, Bate A, Edwards IR. Duplicate detection in adverse drug reaction surveillance. Data Min Knowl Disc. 2007;14(3):305–28.
    • (2007) Data Min Knowl Disc , vol.14 , Issue.3 , pp. 305-328
    • Norén, G.N.1    Orre, R.2    Bate, A.3    Edwards, I.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.