-
1
-
-
0012506276
-
Unified Model of Damage Annealing in CMOS from Freeze-In to Transient Annealing
-
H. H. Sander and B. L. Gregory, “Unified Model of Damage Annealing in CMOS from Freeze-In to Transient Annealing,” IEEE Trans. Nucl. Sci. NS-22, 2157 (1975).
-
(1975)
IEEE Trans. Nucl. Sci.
, vol.NS-22
, pp. 2157
-
-
Sander, H.H.1
Gregory, B.L.2
-
2
-
-
0017216943
-
Charge Yield and Dose Effects in MOS Capacitors at 80 K
-
H. E. Boesch, Jr., and J. M. McGarrity, “Charge Yield and Dose Effects in MOS Capacitors at 80 K,” IEEE Trans. Nucl. Sci. NS-23, 1520 (1976).
-
(1976)
IEEE Trans. Nucl. Sci.
, vol.NS-23
, pp. 1520
-
-
Boesch, H.E.1
McGarrity, J.M.2
-
3
-
-
0016129243
-
Effects of Ionizing Radiation on Thin-Oxide (20 - 1500 A) MOS Capacitors
-
S. Share, A. S. Epstein, V. Kulmar, W. E. Dahlke, and W. Haller, “Effects of Ionizing Radiation on Thin-Oxide (20 - 1500 A) MOS Capacitors,” Jr. Appl. Phys. 45, 4894 (1974).
-
(1974)
Jr. Appl. Phys.
, vol.45
, pp. 4894
-
-
Share, S.1
Epstein, A.S.2
Kulmar, V.3
Dahlke, W.E.4
Haller, W.5
-
4
-
-
0015971461
-
Effect of Gamma-Ray Irradiation on the Surface States of MOS Tunnel Junctions
-
T. P. Ma and R. C. Barker, “Effect of Gamma-Ray Irradiation on the Surface States of MOS Tunnel Junctions,” J. Appl. Phys. 45, 317 (1974).
-
(1974)
J. Appl. Phys.
, vol.45
, pp. 317
-
-
Ma, T.P.1
Barker, R.C.2
-
5
-
-
0018158325
-
Enhanced Flatband Voltage Recovery in Hardened Thin MOS Capacitors
-
H. E. Boesch, Jr., F. B. McLean, J. M. McGarrity, and P. S. Winokur, “Enhanced Flatband Voltage Recovery in Hardened Thin MOS Capacitors,” IEEE Trans. Nucl. Sci. NS-25, 1239 (1978).
-
(1978)
IEEE Trans. Nucl. Sci.
, vol.NS-25
, pp. 1239
-
-
Boesch, H.E.1
McLean, F.B.2
McGarrity, J.M.3
Winokur, P.S.4
-
6
-
-
0021599338
-
Radiation Effects in MOS Capacitors with Very Thin Oxides at 80 K
-
N. S. Saks, M. G. Ancona, and J. A. Modolo, “Radiation Effects in MOS Capacitors with Very Thin Oxides at 80 K,” IEEE Trans. Nucl. Sci. NS-31, 1249 (1984).
-
(1984)
IEEE Trans. Nucl. Sci.
, vol.NS-31
, pp. 1249
-
-
Saks, N.S.1
Ancona, M.G.2
Modolo, J.A.3
-
7
-
-
0017242346
-
Hole Transport and Recovery Characteristics of SiO2 Gate Insulators
-
F. B. McLean, H. E. Boesch, Jr., and J. M. McGarrity, “Hole Transport and Recovery Characteristics of SiO2 Gate Insulators,” IEEE Trans. Nucl. Sci. NS-23, 1506 (1976).
-
(1976)
IEEE Trans. Nucl. Sci.
, vol.NS-23
, pp. 1506
-
-
McLean, F.B.1
Boesch, H.E.2
McGarrity, J.M.3
-
8
-
-
1242276179
-
Rapid Annealing and Charge Injection in A1203 Capacitors
-
F. B. McLean, H. E. Boesch, Jr., P. S. Winokur, J. M. McGarrity, and R. B. Oswald, Jr., “Rapid Annealing and Charge Injection in A1203 Capacitors,” IEEE Trans. Nucl. Sci. NS-21, 47 (1974)
-
(1974)
IEEE Trans. Nucl. Sci.
, vol.NS-21
, pp. 47
-
-
McLean, F.B.1
Boesch, H.E.2
Winokur, P.S.3
McGarrity, J.M.4
Oswald, R.B.5
-
9
-
-
0008560925
-
A Direct Tunneling Model of Charge Transfer at the Insulator-Semiconductor Interface in MIS Devices
-
Oct.
-
F. B. McLean, “A Direct Tunneling Model of Charge Transfer at the Insulator-Semiconductor Interface in MIS Devices,” Harry Diamond Laboratories, HDL-TR-1765 (Oct. 1976).
-
(1976)
Harry Diamond Laboratories, HDL-TR-1765
-
-
McLean, F.B.1
-
10
-
-
0020918475
-
Tunneling Discharge of Trapped Holes in Silicon Dioxide
-
(editors) Elsevier Science Publishers
-
S. Manzini and A. Modelli, “Tunneling Discharge of Trapped Holes in Silicon Dioxide,” in Insulating Films on Semiconductors, J. F. Verweis and D. R. Wolters (editors), Elsevier Science Publishers, p. 112 (1983).
-
(1983)
Insulating Films on Semiconductors
, vol.112
-
-
Manzini, S.1
Modelli, A.2
Verweis, J.F.3
Wolters, D.R.4
-
11
-
-
0018468948
-
Two Stage Process for Buildup of Radiation-Induced Interface States
-
P. S. Winokur, H. E. Boesch, Jr., J. M. McGarrity, and F. B. McLean, “Two Stage Process for Buildup of Radiation-Induced Interface States,” J. Appl Phys 50, 3492 (1979).
-
(1979)
J. Appl Phys.
, vol.50
, pp. 3492
-
-
Winokur, P.S.1
Boesch, H.E.2
McGarrity, J.M.3
McLean, F.B.4
-
12
-
-
0016126266
-
-
We note that the mathematical formalism of the tunneling process is the same whether we consider electrons tunneling from the electrode valence bands into the trapped hole sites in the oxide or the trapped holes tunneling out of the oxide to the electrode valence bands. However, in the simple quantum mechanical two-band, one electron tunneling theory, the tunneling effective mass and the tunneling barrier potential enter only as a product term (in the expression for β, which goes to zero near both band edges of SiO2. Therefore, for tunneling transitions near the bottom of the Sio2 bandgap, it is conceptually easier tointer-pret the microscopic tunneling parameters of effective mass and barrier height as applying to holes tunneling out of the oxide. Further, it is obvious that one cannot assign separate values to the effective mass and barrier height from an experimental determination only of B. For our estimate of barrier height here, we simply use the value of effective mass used in the analysis of reference 10. Se also J. Maserjian
-
We note that the mathematical formalism of the tunneling process is the same whether we consider electrons tunneling from the electrode valence bands into the trapped hole sites in the oxide or the trapped holes tunneling out of the oxide to the electrode valence bands. However, in the simple quantum mechanical two-band, one electron tunneling theory, the tunneling effective mass and the tunneling barrier potential enter only as a product term (in the expression for β, which goes to zero near both band edges of SiO2. Therefore, for tunneling transitions near the bottom of the Sio2 bandgap, it is conceptually easier to inter-pret the microscopic tunneling parameters of effective mass and barrier height as applying to holes tunneling out of the oxide. Further, it is obvious that one cannot assign separate values to the effective mass and barrier height from an experimental determination only of B. For our estimate of barrier height here, we simply use the value of effective mass used in the analysis of reference 10. Se also J. Maserjian, J. Vac. Sci. Technol. 11, 996 (1974).
-
(1974)
J. Vac. Sci. Technol
, vol.11
, Issue.996
-
-
|