메뉴 건너뛰기




Volumn 32, Issue 6, 1985, Pages 3916-3920

Hole removal in thin-gate MOSFETs by tunneling

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84934061532     PISSN: 00189499     EISSN: 15581578     Source Type: Journal    
DOI: 10.1109/TNS.1985.4334043     Document Type: Article
Times cited : (87)

References (12)
  • 1
    • 0012506276 scopus 로고
    • Unified Model of Damage Annealing in CMOS from Freeze-In to Transient Annealing
    • H. H. Sander and B. L. Gregory, “Unified Model of Damage Annealing in CMOS from Freeze-In to Transient Annealing,” IEEE Trans. Nucl. Sci. NS-22, 2157 (1975).
    • (1975) IEEE Trans. Nucl. Sci. , vol.NS-22 , pp. 2157
    • Sander, H.H.1    Gregory, B.L.2
  • 2
    • 0017216943 scopus 로고
    • Charge Yield and Dose Effects in MOS Capacitors at 80 K
    • H. E. Boesch, Jr., and J. M. McGarrity, “Charge Yield and Dose Effects in MOS Capacitors at 80 K,” IEEE Trans. Nucl. Sci. NS-23, 1520 (1976).
    • (1976) IEEE Trans. Nucl. Sci. , vol.NS-23 , pp. 1520
    • Boesch, H.E.1    McGarrity, J.M.2
  • 3
    • 0016129243 scopus 로고
    • Effects of Ionizing Radiation on Thin-Oxide (20 - 1500 A) MOS Capacitors
    • S. Share, A. S. Epstein, V. Kulmar, W. E. Dahlke, and W. Haller, “Effects of Ionizing Radiation on Thin-Oxide (20 - 1500 A) MOS Capacitors,” Jr. Appl. Phys. 45, 4894 (1974).
    • (1974) Jr. Appl. Phys. , vol.45 , pp. 4894
    • Share, S.1    Epstein, A.S.2    Kulmar, V.3    Dahlke, W.E.4    Haller, W.5
  • 4
    • 0015971461 scopus 로고
    • Effect of Gamma-Ray Irradiation on the Surface States of MOS Tunnel Junctions
    • T. P. Ma and R. C. Barker, “Effect of Gamma-Ray Irradiation on the Surface States of MOS Tunnel Junctions,” J. Appl. Phys. 45, 317 (1974).
    • (1974) J. Appl. Phys. , vol.45 , pp. 317
    • Ma, T.P.1    Barker, R.C.2
  • 5
  • 6
    • 0021599338 scopus 로고
    • Radiation Effects in MOS Capacitors with Very Thin Oxides at 80 K
    • N. S. Saks, M. G. Ancona, and J. A. Modolo, “Radiation Effects in MOS Capacitors with Very Thin Oxides at 80 K,” IEEE Trans. Nucl. Sci. NS-31, 1249 (1984).
    • (1984) IEEE Trans. Nucl. Sci. , vol.NS-31 , pp. 1249
    • Saks, N.S.1    Ancona, M.G.2    Modolo, J.A.3
  • 7
    • 0017242346 scopus 로고
    • Hole Transport and Recovery Characteristics of SiO2 Gate Insulators
    • F. B. McLean, H. E. Boesch, Jr., and J. M. McGarrity, “Hole Transport and Recovery Characteristics of SiO2 Gate Insulators,” IEEE Trans. Nucl. Sci. NS-23, 1506 (1976).
    • (1976) IEEE Trans. Nucl. Sci. , vol.NS-23 , pp. 1506
    • McLean, F.B.1    Boesch, H.E.2    McGarrity, J.M.3
  • 9
    • 0008560925 scopus 로고
    • A Direct Tunneling Model of Charge Transfer at the Insulator-Semiconductor Interface in MIS Devices
    • Oct.
    • F. B. McLean, “A Direct Tunneling Model of Charge Transfer at the Insulator-Semiconductor Interface in MIS Devices,” Harry Diamond Laboratories, HDL-TR-1765 (Oct. 1976).
    • (1976) Harry Diamond Laboratories, HDL-TR-1765
    • McLean, F.B.1
  • 10
    • 0020918475 scopus 로고
    • Tunneling Discharge of Trapped Holes in Silicon Dioxide
    • (editors) Elsevier Science Publishers
    • S. Manzini and A. Modelli, “Tunneling Discharge of Trapped Holes in Silicon Dioxide,” in Insulating Films on Semiconductors, J. F. Verweis and D. R. Wolters (editors), Elsevier Science Publishers, p. 112 (1983).
    • (1983) Insulating Films on Semiconductors , vol.112
    • Manzini, S.1    Modelli, A.2    Verweis, J.F.3    Wolters, D.R.4
  • 11
    • 0018468948 scopus 로고
    • Two Stage Process for Buildup of Radiation-Induced Interface States
    • P. S. Winokur, H. E. Boesch, Jr., J. M. McGarrity, and F. B. McLean, “Two Stage Process for Buildup of Radiation-Induced Interface States,” J. Appl Phys 50, 3492 (1979).
    • (1979) J. Appl Phys. , vol.50 , pp. 3492
    • Winokur, P.S.1    Boesch, H.E.2    McGarrity, J.M.3    McLean, F.B.4
  • 12
    • 0016126266 scopus 로고
    • We note that the mathematical formalism of the tunneling process is the same whether we consider electrons tunneling from the electrode valence bands into the trapped hole sites in the oxide or the trapped holes tunneling out of the oxide to the electrode valence bands. However, in the simple quantum mechanical two-band, one electron tunneling theory, the tunneling effective mass and the tunneling barrier potential enter only as a product term (in the expression for β, which goes to zero near both band edges of SiO2. Therefore, for tunneling transitions near the bottom of the Sio2 bandgap, it is conceptually easier tointer-pret the microscopic tunneling parameters of effective mass and barrier height as applying to holes tunneling out of the oxide. Further, it is obvious that one cannot assign separate values to the effective mass and barrier height from an experimental determination only of B. For our estimate of barrier height here, we simply use the value of effective mass used in the analysis of reference 10. Se also J. Maserjian
    • We note that the mathematical formalism of the tunneling process is the same whether we consider electrons tunneling from the electrode valence bands into the trapped hole sites in the oxide or the trapped holes tunneling out of the oxide to the electrode valence bands. However, in the simple quantum mechanical two-band, one electron tunneling theory, the tunneling effective mass and the tunneling barrier potential enter only as a product term (in the expression for β, which goes to zero near both band edges of SiO2. Therefore, for tunneling transitions near the bottom of the Sio2 bandgap, it is conceptually easier to inter-pret the microscopic tunneling parameters of effective mass and barrier height as applying to holes tunneling out of the oxide. Further, it is obvious that one cannot assign separate values to the effective mass and barrier height from an experimental determination only of B. For our estimate of barrier height here, we simply use the value of effective mass used in the analysis of reference 10. Se also J. Maserjian, J. Vac. Sci. Technol. 11, 996 (1974).
    • (1974) J. Vac. Sci. Technol , vol.11 , Issue.996


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.