-
1
-
-
0001106861
-
An extension of the DQA algorithm to convex stochastic programs
-
A.J. Berger, J.M. Mulvey, and A. Ruszczyński, An extension of the DQA algorithm to convex stochastic programs, SIAM J. Optim. 4(4) (1994), pp. 735-753.
-
(1994)
SIAM J. Optim.
, vol.4
, Issue.4
, pp. 735-753
-
-
Berger, A.J.1
Mulvey, J.M.2
Ruszczyński, A.3
-
2
-
-
54049087423
-
Extended monotropic programming and duality
-
D.P. Bertsekas, Extended monotropic programming and duality, Extended Monotropic Program Duality 139(2) (2008), pp. 209-225.
-
(2008)
Extended Monotropic Program Duality
, vol.139
, Issue.2
, pp. 209-225
-
-
Bertsekas, D.P.1
-
4
-
-
40249096072
-
Improving ultimate convergence of an augmented Lagrangian method
-
E.G. Birgin and J.M. Martínez, Improving ultimate convergence of an augmented Lagrangian method, Optim. Methods Softw. 23(2) (2011), pp. 177-195.
-
(2011)
Optim. Methods Softw.
, vol.23
, Issue.2
, pp. 177-195
-
-
Birgin, E.G.1
Martínez, J.M.2
-
5
-
-
84882277916
-
Block coordinate descent algorithms for large-scale sparse multiclass classification
-
M. Blondel, K. Seki, and K. Uehara, Block coordinate descent algorithms for large-scale sparse multiclass classification, Mach. Learn. 93(1) (2013), pp. 31-52.
-
(2013)
Mach. Learn.
, vol.93
, Issue.1
, pp. 31-52
-
-
Blondel, M.1
Seki, K.2
Uehara, K.3
-
6
-
-
80053451705
-
Parallel coordinate descent for L1-regularized loss minimization
-
L. Getoor and T. Scheffer, eds., ACM, June
-
J.K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin, Parallel coordinate descent for L1-regularized loss minimization, in 28th International Conference on Machine Learning (ICML-11), L. Getoor and T. Scheffer, eds., ACM, June 2011, pp. 321-328.
-
(2011)
28th International Conference on Machine Learning (ICML-11)
, pp. 321-328
-
-
Bradley, J.K.1
Kyrola, A.2
Bickson, D.3
Guestrin, C.4
-
7
-
-
84892888999
-
Augmented Lagrangian and alternating direction methods for convex optimization: A tutorial and some illustrative computational results
-
Technical report, December
-
J. Eckstein, Augmented Lagrangian and alternating direction methods for convex optimization: A tutorial and some illustrative computational results. Technical report, December 2012. RUTCOR Research Report RRR 32-2012.
-
(2012)
RUTCOR Research Report
-
-
Eckstein, J.1
-
8
-
-
34249837486
-
On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators
-
J. Eckstein and D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program. 55 (1992), pp. 293-318.
-
(1992)
Math. Program.
, vol.55
, pp. 293-318
-
-
Eckstein, J.1
Bertsekas, D.P.2
-
11
-
-
77951162399
-
Properties of an augmented Lagrangian for design optimization
-
A. Hamdi and A. Griewank, Properties of an augmented Lagrangian for design optimization, Optim. Methods Softw. 25(4) (2009), pp. 645-664.
-
(2009)
Optim. Methods Softw.
, vol.25
, Issue.4
, pp. 645-664
-
-
Hamdi, A.1
Griewank, A.2
-
12
-
-
84865692854
-
Alternating direction method with Gaussian back substitution for separable convex programming
-
B.S. He, M. Tao, and X.M. Yuan, Alternating direction method with Gaussian back substitution for separable convex programming, SIAM J. Optim. 22(2) (2012), pp. 313-340.
-
(2012)
SIAM J. Optim.
, vol.22
, Issue.2
, pp. 313-340
-
-
He, B.S.1
Tao, M.2
Yuan, X.M.3
-
13
-
-
0014604308
-
Multiplier and gradient methods
-
M.R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl. 4 (1969), pp. 303-320.
-
(1969)
J. Optim. Theory Appl.
, vol.4
, pp. 303-320
-
-
Hestenes, M.R.1
-
15
-
-
56449086680
-
A dual coordinate descent method for large-scale linear SVM
-
ACM, New York
-
C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. Sathiya Keerthi, and S. Sundararajan, A dual coordinate descent method for large-scale linear SVM. In ICML 2008, ACM, New York, 2008, pp. 408-415.
-
(2008)
ICML 2008
, pp. 408-415
-
-
Hsieh, C.-J.1
Chang, K.-W.2
Lin, C.-J.3
Sathiya Keerthi, S.4
Sundararajan, S.5
-
17
-
-
77956506829
-
1 minimization with application to compressed sensing; a greedy algorithm
-
1 minimization with application to compressed sensing; a greedy algorithm, Inverse Probl. Imag. 3 (2009), pp. 487-503.
-
(2009)
Inverse Probl. Imag.
, vol.3
, pp. 487-503
-
-
Li, Y.1
Osher, S.2
-
20
-
-
38249010007
-
A diagonal quadratic approximation method for large scale linear programs
-
J.M. Mulvey and A. Ruszczyński, A diagonal quadratic approximation method for large scale linear programs, Oper. Res. Lett. 12 (1992), pp. 205-215.
-
(1992)
Oper. Res. Lett.
, vol.12
, pp. 205-215
-
-
Mulvey, J.M.1
Ruszczyński, A.2
-
21
-
-
0000937493
-
A new scenario decomposition method for large scale stochastic optimization
-
J.M. Mulvey and A. Ruszczyński, A new scenario decomposition method for large scale stochastic optimization, Oper. Res. 43(3) (1995), pp. 477-490.
-
(1995)
Oper. Res.
, vol.43
, Issue.3
, pp. 477-490
-
-
Mulvey, J.M.1
Ruszczyński, A.2
-
23
-
-
84894444593
-
A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints
-
I. Necoarə and A. Patrascu, A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints, Comput. Optim. Appl. 57(2) (2014), pp. 307-337.
-
(2014)
Comput. Optim. Appl.
, vol.57
, Issue.2
, pp. 307-337
-
-
Necoarə, I.1
Patrascu, A.2
-
24
-
-
84865692149
-
Efficiency of coordinate descent methods on huge-scale optimization problems
-
Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM J. Optim. 22(2) (2012), pp. 341-362.
-
(2012)
SIAM J. Optim.
, vol.22
, Issue.2
, pp. 341-362
-
-
Nesterov, Y.1
-
26
-
-
0002380692
-
A method for nonlinear constraints in minimization problems
-
R. Fletcher, ed. Academic Press, New York
-
M.J.D. Powell, A method for nonlinear constraints in minimization problems, in Optimization, R. Fletcher, ed., Academic Press, New York, 1972, pp. 283-298.
-
(1972)
Optimization
, pp. 283-298
-
-
Powell, M.J.D.1
-
27
-
-
84880103760
-
Efficient block-coordinate descent algorithms for the group lasso
-
Z.T. Qin, K. Scheinberg and D. Goldfarb, Efficient block-coordinate descent algorithms for the group lasso, Math. Program. Comput. 5(2) (2013), pp. 143-169.
-
(2013)
Math. Program. Comput.
, vol.5
, Issue.2
, pp. 143-169
-
-
Qin, Z.T.1
Scheinberg, K.2
Goldfarb, D.3
-
28
-
-
84877742402
-
Efficient serial and parallel coordinate descent methods for huge-scale truss topology design
-
D. Klatte, H.-J. Lüthi, and K. Schmedders, (eds.), Springer, Berlin
-
P. Richtárik and M. Takáč, Efficient serial and parallel coordinate descent methods for huge-scale truss topology design, in Operations Research Proceedings 2011, D. Klatte, H.-J. Lüthi, and K. Schmedders, (eds.), Springer, Berlin, 2012, pp. 27-32.
-
(2012)
Operations Research Proceedings 2011
, pp. 27-32
-
-
Richtárik, P.1
Takáč, M.2
-
29
-
-
84897116612
-
Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
-
P. Richtárik and M. Takáč, Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function, Math. Program. Ser. A, 144 (2012), pp. 1-38.
-
(2012)
Math. Program. Ser. A
, vol.144
, pp. 1-38
-
-
Richtárik, P.1
Takáč, M.2
-
32
-
-
34250427726
-
The multiplier method of Hestenes and Powell applied to convex programming
-
R. Tyrell Rockafellar, The multiplier method of Hestenes and Powell applied to convex programming, J. Optim. Theory Appl. 12 (1973), pp. 555-562.
-
(1973)
J. Optim. Theory Appl.
, vol.12
, pp. 555-562
-
-
Tyrell Rockafellar, R.1
-
33
-
-
0016950796
-
Augmented Lagrangians and applications of the proximal point algorithm in convex programming
-
R. Tyrell Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper Res. 1 (1976), pp. 97-116.
-
(1976)
Math. Oper Res.
, vol.1
, pp. 97-116
-
-
Tyrell Rockafellar, R.1
-
34
-
-
0000514655
-
Scenarios and policy aggregation in optimization under uncertainty
-
R. Tyrell Rockafellar and R.J.-B. Wets, Scenarios and policy aggregation in optimization under uncertainty, Math. Oper. Res. 16 (1991), pp. 1-23.
-
(1991)
Math. Oper. Res.
, vol.16
, pp. 1-23
-
-
Tyrell Rockafellar, R.1
Wets, R.J.-B.2
-
35
-
-
0024753940
-
An augmented Lagrangian method for block diagonal linear programming problems
-
A. Ruszczyński, An augmented Lagrangian method for block diagonal linear programming problems, Oper. Res. Lett. 8 (1989), pp. 287-294.
-
(1989)
Oper. Res. Lett.
, vol.8
, pp. 287-294
-
-
Ruszczyński, A.1
-
36
-
-
0029350274
-
On convergence of an augmented Lagrangian decomposition method for sparse convex optimization
-
A. Ruszczyński, On convergence of an augmented Lagrangian decomposition method for sparse convex optimization, Math. Oper. Res. 20(3) (1995), pp. 634-656.
-
(1995)
Math. Oper. Res.
, vol.20
, Issue.3
, pp. 634-656
-
-
Ruszczyński, A.1
-
38
-
-
71149119963
-
1 regularized loss minimization
-
L. Bottou and M. Littman, eds., Omnipress, Montreal, June
-
1 regularized loss minimization, in Proceedings of the 26th International Conference on Machine Learning, L. Bottou and M. Littman, eds., Omnipress, Montreal, June 2009, pp. 929-936.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning
, pp. 929-936
-
-
Shalev-Shwartz, S.1
Tewari, A.2
-
39
-
-
84875134236
-
Stochastic dual coordinate ascent methods for regularized loss minimization
-
S. Shalev-Shwartz and T. Zhang, Stochastic dual coordinate ascent methods for regularized loss minimization, J. Mach. Learn. Res. 14 (2013), pp. 567-599.
-
(2013)
J. Mach. Learn. Res.
, vol.14
, pp. 567-599
-
-
Shalev-Shwartz, S.1
Zhang, T.2
-
40
-
-
0016483032
-
The use of Hestenes' method of multipliers to resolve dual gaps in engineering system optimization
-
G. Stephanopoulos and A.W. Westerberg, The use of Hestenes' method of multipliers to resolve dual gaps in engineering system optimization, J. Optim. Theory Appl. 15 (1975), pp. 285-309.
-
(1975)
J. Optim. Theory Appl.
, vol.15
, pp. 285-309
-
-
Stephanopoulos, G.1
Westerberg, A.W.2
-
41
-
-
84899000498
-
Mini-batch primal and dual methods for SVMs
-
30th International Conference on Machine Learning S. Dasgupta and D. McAllester, eds., Microtome Publishing, Atlanta, GA
-
M. Takáč, A. Bijral, P. Richtárik, and N. Srebro, Mini-batch primal and dual methods for SVMs, in 30th International Conference on Machine Learning, Volume 28 of JMLR: Workshop and Conference Proceedings, S. Dasgupta and D. McAllester, eds., Microtome Publishing, Atlanta, GA, 2013, pp. 1022-1030.
-
(2013)
JMLR: Workshop and Conference Proceedings
, vol.28
, pp. 1022-1030
-
-
Takáč, M.1
Bijral, A.2
Richtárik, P.3
Srebro, N.4
-
42
-
-
84894462848
-
-
Technical report, University of Edinburgh, April arXiv:1304.5530
-
R. Tappenden,P. Richtárik, and J. Gondzio,Inexact coordinate descent: Complexity and preconditioning. Technical report, University of Edinburgh, April 2013. arXiv:1304.5530.
-
(2013)
Inexact Coordinate Descent: Complexity and Preconditioning
-
-
Tappenden, R.1
Richtárik, P.2
Gondzio, J.3
-
43
-
-
0035533631
-
Convergence of a block coordinate descent method for nondifferentiable minimization
-
P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, J. Optim. Theory Appl. 109 (2001), pp. 475-494.
-
(2001)
J. Optim. Theory Appl.
, vol.109
, pp. 475-494
-
-
Tseng, P.1
-
44
-
-
84906666724
-
-
Technical report, August arXiv:1308.5294
-
X. Wang, M. Hong, S. Ma, and Z.Q. Luo, Solving multiple-block separable convex minimization problems using two-block alternating direction method of multipliers. Technical report, August 2013. arXiv:1308.5294.
-
(2013)
Solving Multiple-Block Separable Convex Minimization Problems Using Two-Block Alternating Direction Method of Multipliers
-
-
Wang, X.1
Hong, M.2
Ma, S.3
Luo, Z.Q.4
-
45
-
-
0017982922
-
Decomposition in large system optimization using the method of multipliers
-
N. Watanabe, Y. Nishimura, and M. Matsubara, Decomposition in large system optimization using the method of multipliers, J. Optim. Theory Appl. 25 (1978), pp. 181-193.
-
(1978)
J. Optim. Theory Appl.
, vol.25
, pp. 181-193
-
-
Watanabe, N.1
Nishimura, Y.2
Matsubara, M.3
|