메뉴 건너뛰기




Volumn 29, Issue 11, 2015, Pages 1095-1105

Human telomerase: Biogenesis, trafficking, recruitment, and activation

Author keywords

Biogenesis; Cancer; Recruitment; Telomerase; Telomere; Trafficking

Indexed keywords

RIBONUCLEOPROTEIN; TELOMERASE; TELOMERASE REVERSE TRANSCRIPTASE;

EID: 84932184510     PISSN: 08909369     EISSN: 15495477     Source Type: Journal    
DOI: 10.1101/gad.263863.115     Document Type: Review
Times cited : (233)

References (111)
  • 3
    • 0034775749 scopus 로고    scopus 로고
    • N-terminal domains of the human telomerase catalytic subunit required for enzyme activity in vivo
    • Armbruster BN, Banik SS, Guo C, Smith AC, Counter CM. 2001. N-terminal domains of the human telomerase catalytic subunit required for enzyme activity in vivo. Mol Cell Biol 21: 7775–7786.
    • (2001) Mol Cell Biol , vol.21 , pp. 7775-7786
    • Armbruster, B.N.1    Banik, S.S.2    Guo, C.3    Smith, A.C.4    Counter, C.M.5
  • 6
    • 0035844082 scopus 로고    scopus 로고
    • Pot1, the putative telomere endbinding protein in fission yeast and humans
    • Baumann P, Cech TR. 2001. Pot1, the putative telomere endbinding protein in fission yeast and humans. Science 292: 1171–1175.
    • (2001) Science , vol.292 , pp. 1171-1175
    • Baumann, P.1    Cech, T.R.2
  • 7
    • 14544277627 scopus 로고    scopus 로고
    • Telomeres and telomerase: Their mechanisms of action and the effects of altering their functions
    • Blackburn EH. 2005. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579: 859–862.
    • (2005) FEBS Lett , vol.579 , pp. 859-862
    • Blackburn, E.H.1
  • 10
    • 0344875514 scopus 로고    scopus 로고
    • Tetrahymena telomerase is active as a monomer
    • Bryan TM, Goodrich KJ, Cech TR. 2003. Tetrahymena telomerase is active as a monomer. Mol Biol Cell 14: 4794–4804.
    • (2003) Mol Biol Cell , vol.14 , pp. 4794-4804
    • Bryan, T.M.1    Goodrich, K.J.2    Cech, T.R.3
  • 11
    • 0842346436 scopus 로고    scopus 로고
    • Beginning to understand the end of the chromosome
    • Cech TR. 2004. Beginning to understand the end of the chromosome. Cell 116: 273–279.
    • (2004) Cell , vol.116 , pp. 273-279
    • Cech, T.R.1
  • 12
    • 84865263603 scopus 로고    scopus 로고
    • The human CST complex is a terminator of telomerase activity
    • Chen L-Y, Redon S, Lingner J. 2012. The human CST complex is a terminator of telomerase activity. Nature 488: 540–544.
    • (2012) Nature , vol.488 , pp. 540-544
    • Chen, L.-Y.1    Redon, S.2    Lingner, J.3
  • 13
    • 84864966476 scopus 로고    scopus 로고
    • Nuclear import of hTERT requires a bipartite nuclear localization signal and Akt-mediated phosphorylation
    • Chung J, Khadka P, Chung IK. 2012. Nuclear import of hTERT requires a bipartite nuclear localization signal and Akt-mediated phosphorylation. J Cell Sci 125: 2684–2697.
    • (2012) J Cell Sci , vol.125 , pp. 2684-2697
    • Chung, J.1    Khadka, P.2    Chung, I.K.3
  • 14
    • 84924107491 scopus 로고    scopus 로고
    • Contributions of the TELpatch amino acid cluster on TPP1 to telomericDNAsynthesis by human telomerase
    • Dalby AB, Hofr C, Cech TR. 2015. Contributions of the TELpatch amino acid cluster on TPP1 to telomericDNAsynthesis by human telomerase. J Mol Biol 427: 1291–1303.
    • (2015) J Mol Biol , vol.427 , pp. 1291-1303
    • Dalby, A.B.1    Hofr, C.2    Cech, T.R.3
  • 16
    • 34548317418 scopus 로고    scopus 로고
    • Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1
    • Denchi EL, de Lange T. 2007. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448: 1068–1071.
    • (2007) Nature , vol.448 , pp. 1068-1071
    • Denchi, E.L.1    De Lange, T.2
  • 17
    • 84885580087 scopus 로고    scopus 로고
    • Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation
    • Doksani Y, Wu JY, de Lange T, Zhuang X. 2013. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 155: 345–356.
    • (2013) Cell , vol.155 , pp. 345-356
    • Doksani, Y.1    Wu, J.Y.2    De Lange, T.3    Zhuang, X.4
  • 18
    • 77952604818 scopus 로고    scopus 로고
    • Specificity and stoichiometry of subunit interactions in the human telomerase holoenzyme assembled in vivo
    • Egan ED, Collins K. 2010. Specificity and stoichiometry of subunit interactions in the human telomerase holoenzyme assembled in vivo. Mol Cell Biol 30: 2775–2786.
    • (2010) Mol Cell Biol , vol.30 , pp. 2775-2786
    • Egan, E.D.1    Collins, K.2
  • 19
    • 84866611481 scopus 로고    scopus 로고
    • Biogenesis of telomerase ribonucleoproteins
    • Egan ED, Collins K. 2012a. Biogenesis of telomerase ribonucleoproteins. RNA 18: 1747–1759.
    • (2012) RNA , vol.18 , pp. 1747-1759
    • Egan, E.D.1    Collins, K.2
  • 20
    • 84863992185 scopus 로고    scopus 로고
    • An enhanced H/ACA RNP assembly mechanism for human telomerase RNA
    • Egan ED, Collins K. 2012b. An enhanced H/ACA RNP assembly mechanism for human telomerase RNA. Mol Cell Biol 32: 2428–2439.
    • (2012) Mol Cell Biol , vol.32 , pp. 2428-2439
    • Egan, E.D.1    Collins, K.2
  • 23
    • 0038392866 scopus 로고    scopus 로고
    • Distinct biogenesis pathways for human telomerase RNA and H/ACA small nucleolar RNAs
    • Fu D, Collins K. 2003. Distinct biogenesis pathways for human telomerase RNA and H/ACA small nucleolar RNAs. Mol Cell 11: 1361–1372.
    • (2003) Mol Cell , vol.11 , pp. 1361-1372
    • Fu, D.1    Collins, K.2
  • 24
    • 40949127352 scopus 로고    scopus 로고
    • TLC1 RNA nucleo–cytoplasmic trafficking links telomerase biogenesis to its recruitment to telomeres
    • Gallardo F, Olivier C, Dandjinou AT, Wellinger RJ, Chartrand P. 2008. TLC1 RNA nucleo–cytoplasmic trafficking links telomerase biogenesis to its recruitment to telomeres. EMBO J 27: 748–757.
    • (2008) EMBO J , vol.27 , pp. 748-757
    • Gallardo, F.1    Olivier, C.2    Dandjinou, A.T.3    Wellinger, R.J.4    Chartrand, P.5
  • 25
    • 53349161932 scopus 로고    scopus 로고
    • Structure of the Tribolium castaneum telomerase catalytic subunit TERT
    • Gillis AJ, Schuller AP, Skordalakes E. 2008. Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455: 633–637.
    • (2008) Nature , vol.455 , pp. 633-637
    • Gillis, A.J.1    Schuller, A.P.2    Skordalakes, E.3
  • 26
    • 38349087532 scopus 로고    scopus 로고
    • Characterization of a short isoform of human Tgs1 hypermethylase associating with small nucleolar ribonucleoprotein core proteins and produced by limited proteolytic processing
    • Girard C, Verheggen C, Neel H, Cammas A, Vagner S, Soret J, Bertrand E, Bordonné R. 2008. Characterization of a short isoform of human Tgs1 hypermethylase associating with small nucleolar ribonucleoprotein core proteins and produced by limited proteolytic processing. J Biol Chem 283: 2060–2069.
    • (2008) J Biol Chem , vol.283 , pp. 2060-2069
    • Girard, C.1    Verheggen, C.2    Neel, H.3    Cammas, A.4    Vagner, S.5    Soret, J.6    Bertrand, E.7    Bordonné, R.8
  • 27
    • 0025914141 scopus 로고
    • Telomerase is processive
    • Greider CW. 1991. Telomerase is processive. Mol Cell Biol 11: 4572–4580.
    • (1991) Mol Cell Biol , vol.11 , pp. 4572-4580
    • Greider, C.W.1
  • 28
    • 84885418090 scopus 로고    scopus 로고
    • A motif in the vertebrate telomerase N-terminal linker of TERT contributes to RNA binding and telomerase activity and processivity
    • Harkisheimer M, Mason M, Shuvaeva E, Skordalakes E. 2013. A motif in the vertebrate telomerase N-terminal linker of TERT contributes to RNA binding and telomerase activity and processivity. Structure 21: 1870–1878.
    • (2013) Structure , vol.21 , pp. 1870-1878
    • Harkisheimer, M.1    Mason, M.2    Shuvaeva, E.3    Skordalakes, E.4
  • 31
    • 84886771952 scopus 로고    scopus 로고
    • Tetrahymena telomerase holoenzyme assembly, activation, and inhibition by domains of the p50 central hub
    • Hong K, Upton H, Miracco EJ, Jiang J, Zhou ZH, Feigon J, Collins K. 2013. Tetrahymena telomerase holoenzyme assembly, activation, and inhibition by domains of the p50 central hub. Mol Cell Biol 33: 3962–3971.
    • (2013) Mol Cell Biol , vol.33 , pp. 3962-3971
    • Hong, K.1    Upton, H.2    Miracco, E.J.3    Jiang, J.4    Zhou, Z.H.5    Feigon, J.6    Collins, K.7
  • 33
    • 4544258775 scopus 로고    scopus 로고
    • Adynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2
    • Houghtaling BR, Cuttonaro L, Chang W, Smith S. 2004.Adynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr Biol 14: 1621–1631.
    • (2004) Curr Biol , vol.14 , pp. 1621-1631
    • Houghtaling, B.R.1    Cuttonaro, L.2    Chang, W.3    Smith, S.4
  • 36
    • 84868552929 scopus 로고    scopus 로고
    • POT1–TPP1 regulates telomeric overhang structural dynamics
    • Hwang H, Buncher N, Opresko PL, Myong S. 2012. POT1–TPP1 regulates telomeric overhang structural dynamics. Structure 20: 1872–1880.
    • (2012) Structure , vol.20 , pp. 1872-1880
    • Hwang, H.1    Buncher, N.2    Opresko, P.L.3    Myong, S.4
  • 37
    • 84923260213 scopus 로고    scopus 로고
    • Single-molecule real-time detection of telomerase extension activity
    • Hwang H, Opresko P, Myong S. 2014. Single-molecule real-time detection of telomerase extension activity. Sci Rep 4: 6391.
    • (2014) Sci Rep , vol.4 , pp. 6391
    • Hwang, H.1    Opresko, P.2    Myong, S.3
  • 38
    • 33644800744 scopus 로고    scopus 로고
    • Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase
    • Jacobs SA, Podell ER, Cech TR. 2006. Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat Struct Mol Biol 13: 218–225.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 218-225
    • Jacobs, S.A.1    Podell, E.R.2    Cech, T.R.3
  • 39
    • 17944388104 scopus 로고    scopus 로고
    • Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal
    • Jády BE, Bertrand E, Kiss T. 2004. Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal. J Cell Biol 164: 647–652.
    • (2004) J Cell Biol , vol.164 , pp. 647-652
    • Jády, B.E.1    Bertrand, E.2    Kiss, T.3
  • 40
    • 31944436260 scopus 로고    scopus 로고
    • Cell cycle-dependent recruitment of telomerase RNA and Cajal bodies to human telomeres
    • Jády BE, Richard P, Bertrand E, Kiss T. 2006. Cell cycle-dependent recruitment of telomerase RNA and Cajal bodies to human telomeres. Mol Biol Cell 17: 944–954.
    • (2006) Mol Biol Cell , vol.17 , pp. 944-954
    • Jády, B.E.1    Richard, P.2    Bertrand, E.3    Kiss, T.4
  • 42
    • 84883619008 scopus 로고    scopus 로고
    • Tpz1 controls a telomerase- nonextendible telomeric state and coordinates switching to an extendible state via Ccq1
    • Jun H-I, Liu J, Jeong H, Kim J-K, Qiao F. 2013. Tpz1 controls a telomerase- nonextendible telomeric state and coordinates switching to an extendible state via Ccq1. Genes Dev 27: 1917–1931.
    • (2013) Genes Dev , vol.27 , pp. 1917-1931
    • Jun, H.-I.1    Liu, J.2    Jeong, H.3    Kim, J.-K.4    Qiao, F.5
  • 44
    • 0034769951 scopus 로고    scopus 로고
    • A well-connected and conserved nucleoplasmic helicase is required for production of box C/D and H/ACA snoRNAs and localization of snoRNP proteins
    • King TH, Decatur WA, Bertrand E, Maxwell ES, Fournier MJ. 2001. A well-connected and conserved nucleoplasmic helicase is required for production of box C/D and H/ACA snoRNAs and localization of snoRNP proteins. Mol Cell Biol 21: 7731–7746.
    • (2001) Mol Cell Biol , vol.21 , pp. 7731-7746
    • King, T.H.1    Decatur, W.A.2    Bertrand, E.3    Maxwell, E.S.4    Fournier, M.J.5
  • 45
    • 77749329940 scopus 로고    scopus 로고
    • Box H/ACA small ribonucleoproteins
    • Kiss T, Fayet-Lebaron E, Jády BE. 2010. Box H/ACA small ribonucleoproteins. Mol Cell 37: 597–606.
    • (2010) Mol Cell , vol.37 , pp. 597-606
    • Kiss, T.1    Fayet-Lebaron, E.2    Jády, B.E.3
  • 46
    • 84907509413 scopus 로고    scopus 로고
    • Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1
    • Kocak H, Ballew BJ, Bisht K, Eggebeen R, Hicks BD, Suman S, O’Neil A, Giri N, et al. NCI DCEG Cancer Genomics Research Laboratory, NCI DCEG Cancer Sequencing Working Group 2014. Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1. Genes Dev 28: 2090–2102.
    • (2014) Genes Dev , vol.28 , pp. 2090-2102
    • Kocak, H.1    Ballew, B.J.2    Bisht, K.3    Eggebeen, R.4    Hicks, B.D.5    Suman, S.6    O’Neil, A.7    Giri, N.8
  • 47
    • 0035144580 scopus 로고    scopus 로고
    • RNA binding domain of telomerase reverse transcriptase
    • Lai CK, Mitchell JR, Collins K. 2001. RNA binding domain of telomerase reverse transcriptase. Mol Cell Biol 21: 990–1000.
    • (2001) Mol Cell Biol , vol.21 , pp. 990-1000
    • Lai, C.K.1    Mitchell, J.R.2    Collins, K.3
  • 48
    • 77649317032 scopus 로고    scopus 로고
    • POT1–TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation
    • Latrick CM, Cech TR. 2010. POT1–TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation. EMBO J 29: 924–933.
    • (2010) EMBO J , vol.29 , pp. 924-933
    • Latrick, C.M.1    Cech, T.R.2
  • 53
    • 70449641058 scopus 로고    scopus 로고
    • An RPA-related sequence-specific DNAbinding subunit of telomerase holoenzyme is required for elongation processivity and telomere maintenance
    • Min B, Collins K. 2009. An RPA-related sequence-specific DNAbinding subunit of telomerase holoenzyme is required for elongation processivity and telomere maintenance. Mol Cell 36: 609–619.
    • (2009) Mol Cell , vol.36 , pp. 609-619
    • Min, B.1    Collins, K.2
  • 54
    • 77952771824 scopus 로고    scopus 로고
    • Multiple mechanisms for elongation processivity within the reconstituted Tetrahymena telomerase holoenzyme
    • Min B, Collins K. 2010. Multiple mechanisms for elongation processivity within the reconstituted Tetrahymena telomerase holoenzyme. J Biol Chem 285: 16434–16443.
    • (2010) J Biol Chem , vol.285 , pp. 16434-16443
    • Min, B.1    Collins, K.2
  • 55
    • 0033636897 scopus 로고    scopus 로고
    • Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase
    • Mitchell JR, Collins K. 2000. Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. Mol Cell 6: 361–371.
    • (2000) Mol Cell , vol.6 , pp. 361-371
    • Mitchell, J.R.1    Collins, K.2
  • 56
    • 0032961170 scopus 로고    scopus 로고
    • A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end
    • Mitchell JR, Cheng J, Collins K. 1999. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol Cell Biol 19: 567–576.
    • (1999) Mol Cell Biol , vol.19 , pp. 567-576
    • Mitchell, J.R.1    Cheng, J.2    Collins, K.3
  • 57
    • 45549090631 scopus 로고    scopus 로고
    • Fission yeast Pot1–Tpp1 protects telomeres and regulates telomere length
    • Miyoshi T, Kanoh J, Saito M, Ishikawa F. 2008. Fission yeast Pot1–Tpp1 protects telomeres and regulates telomere length. Science 320: 1341–1344.
    • (2008) Science , vol.320 , pp. 1341-1344
    • Miyoshi, T.1    Kanoh, J.2    Saito, M.3    Ishikawa, F.4
  • 58
    • 0031474466 scopus 로고    scopus 로고
    • Programmed translational frameshifting in a gene required for yeast telomere replication
    • Morris DK, Lundblad V. 1997. Programmed translational frameshifting in a gene required for yeast telomere replication. Curr Biol 7: 969–976.
    • (1997) Curr Biol , vol.7 , pp. 969-976
    • Morris, D.K.1    Lundblad, V.2
  • 59
    • 82955233574 scopus 로고    scopus 로고
    • Tel1ATM and Rad3ATR kinases promote Ccq1–Est1 interaction to maintain telomeres in fission yeast
    • Moser BA, Chang Y-T, Kosti J, Nakamura TM. 2011. Tel1ATM and Rad3ATR kinases promote Ccq1–Est1 interaction to maintain telomeres in fission yeast. Nat Struct Mol Biol 18: 1408–1413.
    • (2011) Nat Struct Mol Biol , vol.18 , pp. 1408-1413
    • Moser, B.A.1    Chang, Y.-T.2    Kosti, J.3    Nakamura, T.M.4
  • 60
    • 33748183271 scopus 로고    scopus 로고
    • Low abundance of telomerase in yeast: Implications for telomerase haploinsufficiency
    • Mozdy AD, Cech TR. 2006. Low abundance of telomerase in yeast: implications for telomerase haploinsufficiency. RNA 12: 1721–1737.
    • (2006) RNA , vol.12 , pp. 1721-1737
    • Mozdy, A.D.1    Cech, T.R.2
  • 62
    • 84872912456 scopus 로고    scopus 로고
    • Finding the end: Recruitment of telomerase to telomeres
    • Nandakumar J, Cech TR. 2013. Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol 14: 69–82.
    • (2013) Nat Rev Mol Cell Biol , vol.14 , pp. 69-82
    • Nandakumar, J.1    Cech, T.R.2
  • 63
    • 84870980867 scopus 로고    scopus 로고
    • The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity
    • Nandakumar J, Bell CF, Weidenfeld I, Zaug AJ, Leinwand LA, Cech TR. 2012. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492: 285–289.
    • (2012) Nature , vol.492 , pp. 285-289
    • Nandakumar, J.1    Bell, C.F.2    Weidenfeld, I.3    Zaug, A.J.4    Leinwand, L.A.5    Cech, T.R.6
  • 64
    • 46249125488 scopus 로고    scopus 로고
    • How shelterin protects mammalian telomeres
    • Palm W, de Lange T. 2008. How shelterin protects mammalian telomeres. Annu Rev Genet 42: 301–334.
    • (2008) Annu Rev Genet , vol.42 , pp. 301-334
    • Palm, W.1    De Lange, T.2
  • 65
    • 0035830494 scopus 로고    scopus 로고
    • Cdc13 delivers separate complexes to the telomere for end protection and replication
    • Pennock E, Buckley K, Lundblad V. 2001. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104: 387–396.
    • (2001) Cell , vol.104 , pp. 387-396
    • Pennock, E.1    Buckley, K.2    Lundblad, V.3
  • 67
    • 36749029313 scopus 로고    scopus 로고
    • Protein–RNA and protein– protein interactions mediate association of human EST1A/SMG6 with telomerase
    • Redon S, Reichenbach P, Lingner J. 2007. Protein–RNA and protein– protein interactions mediate association of human EST1A/SMG6 with telomerase. Nucleic Acids Res 35: 7011–7022.
    • (2007) Nucleic Acids Res , vol.35 , pp. 7011-7022
    • Redon, S.1    Reichenbach, P.2    Lingner, J.3
  • 68
    • 77957243987 scopus 로고    scopus 로고
    • The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase
    • Redon S, Reichenbach P, Lingner J. 2010. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 38: 5797–5806.
    • (2010) Nucleic Acids Res , vol.38 , pp. 5797-5806
    • Redon, S.1    Reichenbach, P.2    Lingner, J.3
  • 69
    • 0037381155 scopus 로고    scopus 로고
    • A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed
    • Reichenbach P, Höss M, Azzalin CM, Nabholz M, Bucher P, Lingner J. 2003. A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr Biol 13: 568–574.
    • (2003) Curr Biol , vol.13 , pp. 568-574
    • Reichenbach, P.1    Höss, M.2    Azzalin, C.M.3    Nabholz, M.4    Bucher, P.5    Lingner, J.6
  • 70
    • 0042967786 scopus 로고    scopus 로고
    • A common sequence motif determines the Cajal bodyspecific localization of box H/ACA scaRNAs
    • Richard P, Darzacq X, Bertrand E, Jády BE, Verheggen C, Kiss T. 2003. A common sequence motif determines the Cajal bodyspecific localization of box H/ACA scaRNAs. EMBO J 22: 4283–4293.
    • (2003) EMBO J , vol.22 , pp. 4283-4293
    • Richard, P.1    Darzacq, X.2    Bertrand, E.3    Jády, B.E.4    Verheggen, C.5    Kiss, T.6
  • 71
    • 79955492603 scopus 로고    scopus 로고
    • Human telomerase domain interactions capture DNA for TEN domain-dependent processive elongation
    • Robart AR, Collins K. 2011. Human telomerase domain interactions capture DNA for TEN domain-dependent processive elongation. Mol Cell 42: 308–318.
    • (2011) Mol Cell , vol.42 , pp. 308-318
    • Robart, A.R.1    Collins, K.2
  • 72
    • 35748951600 scopus 로고    scopus 로고
    • Structure of the RNA-binding domain of telomerase: Implications for RNA recognition and binding
    • Rouda S, Skordalakes E. 2007. Structure of the RNA-binding domain of telomerase: implications for RNA recognition and binding. Structure 15: 1403–1412.
    • (2007) Structure , vol.15 , pp. 1403-1412
    • Rouda, S.1    Skordalakes, E.2
  • 74
    • 84929097392 scopus 로고    scopus 로고
    • Identification of human TERT elements necessary for telomerase recruitment to telomeres
    • Schmidt JC, Dalby AB, Cech TR. 2014. Identification of human TERT elements necessary for telomerase recruitment to telomeres. Elife 3: e03563.
    • (2014) Elife , vol.3
    • Schmidt, J.C.1    Dalby, A.B.2    Cech, T.R.3
  • 75
    • 38849111756 scopus 로고    scopus 로고
    • Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II
    • Schoeftner S, Blasco MA. 2008. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10: 228–236.
    • (2008) Nat Cell Biol , vol.10 , pp. 228-236
    • Schoeftner, S.1    Blasco, M.A.2
  • 76
    • 0033539171 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle
    • Seto AG, Zaug AJ, Sobel SG, Wolin SL, Cech TR. 1999. Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature 401: 177–180.
    • (1999) Nature , vol.401 , pp. 177-180
    • Seto, A.G.1    Zaug, A.J.2    Sobel, S.G.3    Wolin, S.L.4    Cech, T.R.5
  • 78
    • 84867243004 scopus 로고    scopus 로고
    • Specificity requirements for human telomere protein interaction with telomerase holoenzyme
    • Sexton AN, Youmans DT, Collins K. 2012. Specificity requirements for human telomere protein interaction with telomerase holoenzyme. J Biol Chem 287: 34455–34464.
    • (2012) J Biol Chem , vol.287 , pp. 34455-34464
    • Sexton, A.N.1    Youmans, D.T.2    Collins, K.3
  • 80
    • 82755192899 scopus 로고    scopus 로고
    • Role of telomeres and telomerase in cancer
    • Shay JW, Wright WE. 2011. Role of telomeres and telomerase in cancer. Semin Cancer Biol 21: 349–353.
    • (2011) Semin Cancer Biol , vol.21 , pp. 349-353
    • Shay, J.W.1    Wright, W.E.2
  • 82
    • 0141525391 scopus 로고    scopus 로고
    • Ku interacts with telomeraseRNA to promote telomere addition at native and broken chromosome ends
    • Stellwagen AE, Haimberger ZW, Veatch JR, Gottschling DE. 2003. Ku interacts with telomeraseRNA to promote telomere addition at native and broken chromosome ends. Genes Dev 17: 2384–2395.
    • (2003) Genes Dev , vol.17 , pp. 2384-2395
    • Stellwagen, A.E.1    Haimberger, Z.W.2    Veatch, J.R.3    Gottschling, D.E.4
  • 83
    • 84864020175 scopus 로고    scopus 로고
    • Telomerase recruitment requires both TCAB1 and Cajal bodies independently
    • Stern JL, Zyner KG, Pickett HA, Cohen SB, Bryan TM. 2012. Telomerase recruitment requires both TCAB1 and Cajal bodies independently. Mol Cell Biol 32: 2384–2395.
    • (2012) Mol Cell Biol , vol.32 , pp. 2384-2395
    • Stern, J.L.1    Zyner, K.G.2    Pickett, H.A.3    Cohen, S.B.4    Bryan, T.M.5
  • 85
    • 79960680907 scopus 로고    scopus 로고
    • Stimulation of yeast telomerase activity by the ever shorter telomere 3 (Est3) subunit is dependent on direct interaction with the catalytic protein Est2
    • Talley JM, DeZwaan DC, Maness LD, Freeman BC, Friedman KL. 2011. Stimulation of yeast telomerase activity by the ever shorter telomere 3 (Est3) subunit is dependent on direct interaction with the catalytic protein Est2. J Biol Chem 286: 26431–26439.
    • (2011) J Biol Chem , vol.286 , pp. 26431-26439
    • Talley, J.M.1    Dezwaan, D.C.2    Maness, L.D.3    Freeman, B.C.4    Friedman, K.L.5
  • 87
    • 33744799697 scopus 로고    scopus 로고
    • Structure and function of telomerase RNA
    • Theimer CA, Feigon J. 2006. Structure and function of telomerase RNA. Curr Opin Struct Biol 16: 307–318.
    • (2006) Curr Opin Struct Biol , vol.16 , pp. 307-318
    • Theimer, C.A.1    Feigon, J.2
  • 88
    • 58049204228 scopus 로고    scopus 로고
    • Fission yeast Ccq1 is telomerase recruiter and local checkpoint controller
    • Tomita K, Cooper JP. 2008. Fission yeast Ccq1 is telomerase recruiter and local checkpoint controller. Genes Dev 22: 3461–3474.
    • (2008) Genes Dev , vol.22 , pp. 3461-3474
    • Tomita, K.1    Cooper, J.P.2
  • 90
    • 55549090746 scopus 로고    scopus 로고
    • Telomerase reverse transcriptase is required for the localization of telomerase RNA to cajal bodies and telomeres in human cancer cells
    • Tomlinson RL, Abreu EB, Ziegler T, Ly H, Counter CM, Terns RM, Terns MP. 2008. Telomerase reverse transcriptase is required for the localization of telomerase RNA to cajal bodies and telomeres in human cancer cells. Mol Biol Cell 19: 3793–3800.
    • (2008) Mol Biol Cell , vol.19 , pp. 3793-3800
    • Tomlinson, R.L.1    Abreu, E.B.2    Ziegler, T.3    Ly, H.4    Counter, C.M.5    Terns, R.M.6    Terns, M.P.7
  • 91
    • 84907537292 scopus 로고    scopus 로고
    • Regulated assembly and disassembly of the yeast telomerase quaternary complex
    • Tucey TM, Lundblad V. 2014. Regulated assembly and disassembly of the yeast telomerase quaternary complex. Genes Dev 28: 2077–2089.
    • (2014) Genes Dev , vol.28 , pp. 2077-2089
    • Tucey, T.M.1    Lundblad, V.2
  • 92
    • 40749135820 scopus 로고    scopus 로고
    • Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly
    • Venteicher AS, Meng Z, Mason PJ, Veenstra TD, Artandi SE. 2008. Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 132: 945–957.
    • (2008) Cell , vol.132 , pp. 945-957
    • Venteicher, A.S.1    Meng, Z.2    Mason, P.J.3    Veenstra, T.D.4    Artandi, S.E.5
  • 94
  • 95
    • 84898880765 scopus 로고    scopus 로고
    • Human telomerase specialization for repeat synthesis by unique handling of primer-template duplex
    • Wu RA, Collins K. 2014. Human telomerase specialization for repeat synthesis by unique handling of primer-template duplex. EMBO J 33: 921–935.
    • (2014) EMBO J , vol.33 , pp. 921-935
    • Wu, R.A.1    Collins, K.2
  • 96
    • 84863622662 scopus 로고    scopus 로고
    • Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST
    • Wu P, Takai H, de Lange T. 2012. Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 150: 39–52.
    • (2012) Cell , vol.150 , pp. 39-52
    • Wu, P.1    Takai, H.2    De Lange, T.3
  • 97
    • 84905595327 scopus 로고    scopus 로고
    • Inventory of telomerase components in human cells reveals multiple subpopulations of hTR and hTERT
    • Xi L, Cech TR. 2014. Inventory of telomerase components in human cells reveals multiple subpopulations of hTR and hTERT. Nucleic Acids Res 42: 8565–8577.
    • (2014) Nucleic Acids Res , vol.42 , pp. 8565-8577
    • Xi, L.1    Cech, T.R.2
  • 98
    • 33846692105 scopus 로고    scopus 로고
    • TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase
    • Xin H, Liu D, Wan M, Safari A, Kim H, Sun W, O’Connor MS, Songyang Z. 2007. TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase. Nature 445: 559–562.
    • (2007) Nature , vol.445 , pp. 559-562
    • Xin, H.1    Liu, D.2    Wan, M.3    Safari, A.4    Kim, H.5    Sun, W.6    O’Connor, M.S.7    Songyang, Z.8
  • 99
    • 84856655950 scopus 로고    scopus 로고
    • Tel1(ATM) and Rad3 (ATR) phosphorylate the telomere protein Ccq1 to recruit telomerase and elongate telomeres in fission yeast
    • Yamazaki H, Tarumoto Y, Ishikawa F. 2012. Tel1(ATM) and Rad3 (ATR) phosphorylate the telomere protein Ccq1 to recruit telomerase and elongate telomeres in fission yeast. Genes Dev 26: 241–246.
    • (2012) Genes Dev , vol.26 , pp. 241-246
    • Yamazaki, H.1    Tarumoto, Y.2    Ishikawa, F.3
  • 101
    • 51349100639 scopus 로고    scopus 로고
    • A proposed OB-fold with a protein-interaction surface in Candida albicans telomerase protein Est3
    • Yu EY, Wang F, Lei M, Lue NF. 2008. A proposed OB-fold with a protein-interaction surface in Candida albicans telomerase protein Est3. Nat Struct Mol Biol 15: 985–989.
    • (2008) Nat Struct Mol Biol , vol.15 , pp. 985-989
    • Yu, E.Y.1    Wang, F.2    Lei, M.3    Lue, N.F.4
  • 102
    • 23344451160 scopus 로고    scopus 로고
    • Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro
    • Zaug AJ, Podell ER, Cech TR. 2005. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc Natl Acad Sci 102: 10864–10869.
    • (2005) Proc Natl Acad Sci , vol.102 , pp. 10864-10869
    • Zaug, A.J.1    Podell, E.R.2    Cech, T.R.3
  • 103
    • 77949382591 scopus 로고    scopus 로고
    • Functional interaction between telomere protein TPP1 and telomerase
    • Zaug AJ, Podell ER, Nandakumar J, Cech TR. 2010. Functional interaction between telomere protein TPP1 and telomerase. Genes Dev 24: 613–622.
    • (2010) Genes Dev , vol.24 , pp. 613-622
    • Zaug, A.J.1    Podell, E.R.2    Nandakumar, J.3    Cech, T.R.4
  • 104
  • 105
    • 84862907900 scopus 로고    scopus 로고
    • Structural basis for Tetrahymena telomerase processivity factor Teb1 binding to single-stranded telomeric-repeat DNA
    • Zeng Z, Min B, Huang J, Hong K, Yang Y, Collins K, Lei M. 2011. Structural basis for Tetrahymena telomerase processivity factor Teb1 binding to single-stranded telomeric-repeat DNA. Proc Natl Acad Sci 108: 20357–20361.
    • (2011) Proc Natl Acad Sci , vol.108 , pp. 20357-20361
    • Zeng, Z.1    Min, B.2    Huang, J.3    Hong, K.4    Yang, Y.5    Collins, K.6    Lei, M.7
  • 106
    • 84862909134 scopus 로고    scopus 로고
    • Architecture of human telomerase RNA
    • Zhang Q, Kim N-K, Feigon J. 2011. Architecture of human telomerase RNA. Proc Natl Acad Sci 108: 20325–20332.
    • (2011) Proc Natl Acad Sci , vol.108 , pp. 20325-20332
    • Zhang, Q.1    Kim, N.-K.2    Feigon, J.3
  • 108
    • 68049088928 scopus 로고    scopus 로고
    • Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells
    • Zhao Y, Sfeir AJ, Zou Y, Buseman CM, Chow TT, Shay JW, Wright WE. 2009.Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 138: 463–475.
    • (2009) Cell , vol.138 , pp. 463-475
    • Zhao, Y.1    Sfeir, A.J.2    Zou, Y.3    Buseman, C.M.4    Chow, T.T.5    Shay, J.W.6    Wright, W.E.7
  • 110
    • 84864607108 scopus 로고    scopus 로고
    • TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends
    • Zhong FL, Batista LFZ, Freund A, Pech MF, Venteicher AS, Artandi SE. 2012. TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 150: 481–494.
    • (2012) Cell , vol.150 , pp. 481-494
    • Zhong, F.L.1    Batista, L.2    Freund, A.3    Pech, M.F.4    Venteicher, A.S.5    Artandi, S.E.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.