메뉴 건너뛰기




Volumn 166, Issue , 2015, Pages 172-184

Feature selection for classification with class-separability strategy and data envelopment analysis

Author keywords

Class separability strategy; Classification; Data envelopment analysis; Feature selection; Super efficiency

Indexed keywords

DATA ENVELOPMENT ANALYSIS; EFFICIENCY; FEATURE EXTRACTION; ITERATIVE METHODS; REDUNDANCY;

EID: 84931575672     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.03.081     Document Type: Article
Times cited : (18)

References (57)
  • 1
    • 84894547374 scopus 로고    scopus 로고
    • Quality of information-based source assessment and selection
    • Lin Y., Hu X., Wu X. Quality of information-based source assessment and selection. Neurocomputing 2014, 133:95-102.
    • (2014) Neurocomputing , vol.133 , pp. 95-102
    • Lin, Y.1    Hu, X.2    Wu, X.3
  • 2
    • 84868655354 scopus 로고    scopus 로고
    • Mutual information based input feature selection for classification problems
    • Cang S., Yu H. Mutual information based input feature selection for classification problems. Decis. Support Syst. 2012, 54:691-698.
    • (2012) Decis. Support Syst. , vol.54 , pp. 691-698
    • Cang, S.1    Yu, H.2
  • 3
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and features election
    • Guyon I., Elisseeff A. An introduction to variable and features election. J. Mach. Learn. Res. 2003, 3:1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 4
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating features election algorithms for classification and clustering
    • Liu H., Yu L. Toward integrating features election algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005, 17(4):491-502.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 5
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T.S., Cristianini N., Duffy N., Bednarski D.W., Schummer M., Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16(10):906-914.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 6
    • 27644496932 scopus 로고    scopus 로고
    • A new dependency and correlation analysis for features
    • Qu G., Hariri S., Yousif M. A new dependency and correlation analysis for features. IEEE Trans. Knowl. Data Eng. 2005, 17(9):1199-1207.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.9 , pp. 1199-1207
    • Qu, G.1    Hariri, S.2    Yousif, M.3
  • 7
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information. criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., Long F., Ding C. Feature selection based on mutual information. criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27(8):1226-1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 8
    • 12144251725 scopus 로고    scopus 로고
    • Effective feature selection scheme using mutual information
    • Huang D., Chow T.W.S. Effective feature selection scheme using mutual information. Neurocomputing 2005, 63:325-343.
    • (2005) Neurocomputing , vol.63 , pp. 325-343
    • Huang, D.1    Chow, T.W.S.2
  • 9
    • 40649115462 scopus 로고    scopus 로고
    • A parameterless feature ranking algorithm based on mi
    • Huang J.J., Cai Y.Z., Xu X.M. A parameterless feature ranking algorithm based on mi. Neurocomputing 2008, 71:1656-1668.
    • (2008) Neurocomputing , vol.71 , pp. 1656-1668
    • Huang, J.J.1    Cai, Y.Z.2    Xu, X.M.3
  • 10
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L., Liu H. Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 2004, 5:1205-1224.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 12
    • 84877634882 scopus 로고    scopus 로고
    • Theoretical and empirical study on the potential inadequacy of mutual information for feature selection in classification
    • Frénay B., Doquire G., Verleysen M. Theoretical and empirical study on the potential inadequacy of mutual information for feature selection in classification. Neurocomputing 2013, 112:64-78.
    • (2013) Neurocomputing , vol.112 , pp. 64-78
    • Frénay, B.1    Doquire, G.2    Verleysen, M.3
  • 13
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • ICML'07, ACM Press, New York, NY, USA
    • Z. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised learning, in: Proceedings of the 24th International Conference on Machine learning, ICML'07, ACM Press, New York, NY, USA, 2007, pp. 1151-1157.
    • (2007) Proceedings of the 24th International Conference on Machine learning , pp. 1151-1157
    • Zhao, Z.1    Liu, H.2
  • 15
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • ICML'00, Morgan Kaufmann, Los Altos, CA, USA
    • M.A. Hall, Correlation-based feature selection for discrete and numeric class machine learning, in: Proceedings of the Seventh International Conference on Machine Learning, ICML'00, Morgan Kaufmann, Los Altos, CA, USA, 2000, pp. 359-366.
    • (2000) Proceedings of the Seventh International Conference on Machine Learning , pp. 359-366
    • Hall, M.A.1
  • 16
    • 0004493166 scopus 로고    scopus 로고
    • On the approximation of minimizing non zero variables or unsatisfied relations in linear systems
    • Amaldi E., Kann V. On the approximation of minimizing non zero variables or unsatisfied relations in linear systems. Theor. Comput. Sci. 1998, 209:237-260.
    • (1998) Theor. Comput. Sci. , vol.209 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 17
    • 33845802629 scopus 로고    scopus 로고
    • Stochastic local search for the feature set problem, with applications to microarray data
    • Albrecht A.A. Stochastic local search for the feature set problem, with applications to microarray data. Appl. Math. Comput. 2006, 183(2):1148-1164.
    • (2006) Appl. Math. Comput. , vol.183 , Issue.2 , pp. 1148-1164
    • Albrecht, A.A.1
  • 18
    • 0028468293 scopus 로고
    • Using mi for selecting features in supervised neural net learning
    • Battiti R. Using mi for selecting features in supervised neural net learning. IEEE Trans. Neural Netw. 1994, 5(4):537-550.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 19
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak N., Choi C.H. Input feature selection for classification problems. IEEE Trans. Neural Netw. 2002, 13(1):143-159.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.H.2
  • 20
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • Fleuret F. Fast binary feature selection with conditional mutual information. J. Mach. Learn. Res. 2004, 5:1531-1555.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 22
    • 84992726552 scopus 로고
    • Estimating attributes: analysis and extensions of relief
    • ECML'94, Springer-Verlag New York, Inc., Secaucus, NJ, USA
    • I. Kononenko, Estimating attributes: analysis and extensions of relief, in: Proceedings of European Conference on Machine Learning, ECML'94, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1994, pp. 171-182.
    • (1994) Proceedings of European Conference on Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 23
    • 0002312061 scopus 로고
    • Feature selection and feature extraction for text categorization
    • Association for Computational Linguistics Morristown, NJ, USA
    • D.D. Lewis, Feature selection and feature extraction for text categorization, in: Proceedings of the Workshop on Speech and Natural Language, Association for Computational Linguistics Morristown, NJ, USA, 1992, pp. 212-217.
    • (1992) Proceedings of the Workshop on Speech and Natural Language , pp. 212-217
    • Lewis, D.D.1
  • 24
    • 84901192462 scopus 로고    scopus 로고
    • Feature selection using data envelopment analysis
    • Zhang Y., Yang A., Xiong C., Zhang Z. Feature selection using data envelopment analysis. Knowl.-Based Syst. 2014, 64:70-80.
    • (2014) Knowl.-Based Syst. , vol.64 , pp. 70-80
    • Zhang, Y.1    Yang, A.2    Xiong, C.3    Zhang, Z.4
  • 25
    • 0038797944 scopus 로고    scopus 로고
    • John Wiley & Sons Ltd, Chichester, West Sussex, England
    • Webb A.R. Statistical Pattern Recognition 2002, John Wiley & Sons Ltd, Chichester, West Sussex, England. 2nd edition.
    • (2002) Statistical Pattern Recognition
    • Webb, A.R.1
  • 27
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 28
    • 84960463485 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • CSB'03, IEEE Computer Society, Washington, DC, USA
    • C. Ding, H. Peng, Minimum redundancy feature selection from microarray gene expression data, in: Proceedings of the IEEE Computer Society Conference on Bioinformatics, CSB'03, IEEE Computer Society, Washington, DC, USA, 2003, pp. 523-528.
    • (2003) Proceedings of the IEEE Computer Society Conference on Bioinformatics , pp. 523-528
    • Ding, C.1    Peng, H.2
  • 29
    • 84868628924 scopus 로고    scopus 로고
    • Divergence-based feature selection for separate classes
    • Zhang Y., Li S., Wang T., Zhang Z. Divergence-based feature selection for separate classes. Neurocomputing 2013, 101:32-42.
    • (2013) Neurocomputing , vol.101 , pp. 32-42
    • Zhang, Y.1    Li, S.2    Wang, T.3    Zhang, Z.4
  • 30
    • 84942213019 scopus 로고
    • The best two independent measurements are not the two best
    • Cover T.M. The best two independent measurements are not the two best. IEEE Trans. Syst. Man Cybern. 1974, 4:116-117.
    • (1974) IEEE Trans. Syst. Man Cybern. , vol.4 , pp. 116-117
    • Cover, T.M.1
  • 32
    • 84870441851 scopus 로고    scopus 로고
    • A fast clustering-based feature subset selection algorithm for high-dimensional data
    • Song Q., Ni J., Wang G. A fast clustering-based feature subset selection algorithm for high-dimensional data. IEEE Trans. Knowl. Data Eng. 2013, 25(1):1-14.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.1 , pp. 1-14
    • Song, Q.1    Ni, J.2    Wang, G.3
  • 34
    • 76749129275 scopus 로고    scopus 로고
    • Supervised feature selection by clustering using conditional mutual information-based distances
    • Sotoca J.M., Pla F. Supervised feature selection by clustering using conditional mutual information-based distances. Pattern Recognit. 2010, 43(6):2068-2081.
    • (2010) Pattern Recognit. , vol.43 , Issue.6 , pp. 2068-2081
    • Sotoca, J.M.1    Pla, F.2
  • 35
    • 84855872857 scopus 로고    scopus 로고
    • Feature subset selection with cumulate conditional mutual information minimization
    • Zhang Y., Zhang Z. Feature subset selection with cumulate conditional mutual information minimization. Expert Syst. Appl. 2012, 39:6078-6088.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 6078-6088
    • Zhang, Y.1    Zhang, Z.2
  • 37
    • 33745799421 scopus 로고    scopus 로고
    • On the use of variable complementarity for feature selection in cancer classification
    • Meyer P., Bontempi G. On the use of variable complementarity for feature selection in cancer classification. Evol. Comput. Mach. Learn. Bioinform. 2006, 3907:91-102.
    • (2006) Evol. Comput. Mach. Learn. Bioinform. , vol.3907 , pp. 91-102
    • Meyer, P.1    Bontempi, G.2
  • 38
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation. a unifying framework for information theoretic feature selection
    • Brown G., Pocock A., Zhao M.-J., Luján M. Conditional likelihood maximisation. a unifying framework for information theoretic feature selection. J. Mach. Learn. Res. 2012, 13:27-66.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.-J.3    Luján, M.4
  • 39
    • 50849120052 scopus 로고    scopus 로고
    • Data envelopment analysis (DEA)-thirty years on
    • Cooka W.D., Seiford L.M. Data envelopment analysis (DEA)-thirty years on. Eur. J. Oper. Res. 2009, 192:1-17.
    • (2009) Eur. J. Oper. Res. , vol.192 , pp. 1-17
    • Cooka, W.D.1    Seiford, L.M.2
  • 40
    • 61349101813 scopus 로고    scopus 로고
    • Constructing ensembles from data envelopment analysis
    • Zheng Z., Padmanabhan B. Constructing ensembles from data envelopment analysis. INFORMS J. Comput. 2007, 19(4):486-496.
    • (2007) INFORMS J. Comput. , vol.19 , Issue.4 , pp. 486-496
    • Zheng, Z.1    Padmanabhan, B.2
  • 41
    • 80052024566 scopus 로고    scopus 로고
    • Data envelopment analysis classification machine
    • Yan H., Wei Q. Data envelopment analysis classification machine. Inf. Sci. 2011, 181:5029-5041.
    • (2011) Inf. Sci. , vol.181 , pp. 5029-5041
    • Yan, H.1    Wei, Q.2
  • 42
    • 84894381647 scopus 로고    scopus 로고
    • Interactive classification using data envelopment analysis
    • Pendharkar P.C., Troutt M.D. Interactive classification using data envelopment analysis. Ann. Oper. Res. 2014, 214:125-141.
    • (2014) Ann. Oper. Res. , vol.214 , pp. 125-141
    • Pendharkar, P.C.1    Troutt, M.D.2
  • 43
    • 84859910730 scopus 로고    scopus 로고
    • Fuzzy classification using the data envelopment analysis
    • Pendharkar P. Fuzzy classification using the data envelopment analysis. Knowl.-Based Syst. 2012, 31:183-192.
    • (2012) Knowl.-Based Syst. , vol.31 , pp. 183-192
    • Pendharkar, P.1
  • 44
    • 0018032112 scopus 로고
    • Measuring the efficiency of decision making units
    • Charnes A., Cooper W.W., Rhodes E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2:429-444.
    • (1978) Eur. J. Oper. Res. , vol.2 , pp. 429-444
    • Charnes, A.1    Cooper, W.W.2    Rhodes, E.3
  • 46
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and Markov blanket induction for causal discovery and feature selection for classification. Part I. Algorithms and empirical evaluation
    • Tsamardinos I., Aliferis C., Statnikov A. Local causal and Markov blanket induction for causal discovery and feature selection for classification. Part I. Algorithms and empirical evaluation. J. Mach. Learn. Res. 2010, 11:171-234.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 171-234
    • Tsamardinos, I.1    Aliferis, C.2    Statnikov, A.3
  • 47
    • 51249181779 scopus 로고
    • A new polynomial time algorithm for linear programming
    • Karmarkar N. A new polynomial time algorithm for linear programming. Combinatorica 1984, 4:373-395.
    • (1984) Combinatorica , vol.4 , pp. 373-395
    • Karmarkar, N.1
  • 51
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha D., Kibler D. Instance-based learning algorithms. Mach. Learn. 1991, 6:37-66.
    • (1991) Mach. Learn. , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2
  • 53
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of Relief and ReliefF
    • Robnik-Sikonja M., Kononenko I. Theoretical and empirical analysis of Relief and ReliefF. Mach. Learn. 2003, 53:23-69.
    • (2003) Mach. Learn. , vol.53 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 55
    • 0032640526 scopus 로고    scopus 로고
    • An enhanced DEA Russell graph efficiency measure
    • Pastor J.T., Ruiz J.L., Sirvent I. An enhanced DEA Russell graph efficiency measure. Eur. J. Oper. Res. 1999, 115(3):596-607.
    • (1999) Eur. J. Oper. Res. , vol.115 , Issue.3 , pp. 596-607
    • Pastor, J.T.1    Ruiz, J.L.2    Sirvent, I.3
  • 56
    • 0043138863 scopus 로고    scopus 로고
    • Ram. a range adjusted measure of inefficiency for use with additive models, and relations to other models and measure in DEA
    • Cooper W.W., Park K.S., Pastor J.T. Ram. a range adjusted measure of inefficiency for use with additive models, and relations to other models and measure in DEA. J. Product. Anal. 1999, 11:5-42.
    • (1999) J. Product. Anal. , vol.11 , pp. 5-42
    • Cooper, W.W.1    Park, K.S.2    Pastor, J.T.3
  • 57
    • 79952192341 scopus 로고    scopus 로고
    • BAM. a bounded adjusted measure of efficiency for use with bounded additive models
    • Cooper W.W., Pastor J.T., Borras F., Aparicio J., Pastor D. BAM. a bounded adjusted measure of efficiency for use with bounded additive models. J. Product. Anal. 2011, 35(2):85-94.
    • (2011) J. Product. Anal. , vol.35 , Issue.2 , pp. 85-94
    • Cooper, W.W.1    Pastor, J.T.2    Borras, F.3    Aparicio, J.4    Pastor, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.