메뉴 건너뛰기




Volumn 48, Issue 10, 2015, Pages 3191-3202

Multimodal learning for facial expression recognition

Author keywords

Facial expression recognition; Landmark; Multimodal learning; Texture

Indexed keywords

LEARNING SYSTEMS; TEXTURES;

EID: 84931567876     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2015.04.012     Document Type: Article
Times cited : (108)

References (31)
  • 1
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G.E. Hinton, and R.R. Salakhutdinov Reducing the dimensionality of data with neural networks Science 313 2006 504 507
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 3
    • 84862159422 scopus 로고    scopus 로고
    • Learning spatiotemporal features by using independent component analysis with application to facial expression recognition
    • F. Long, T. Wu, J.R. Movellan, M.S. Bartlett, and G. Littlewort Learning spatiotemporal features by using independent component analysis with application to facial expression recognition Neurocomputing 93 2012 126 132
    • (2012) Neurocomputing , vol.93 , pp. 126-132
    • Long, F.1    Wu, T.2    Movellan, J.R.3    Bartlett, M.S.4    Littlewort, G.5
  • 14
    • 84897584251 scopus 로고    scopus 로고
    • Non-negative matrix factorization a comprehensive review
    • Y. Wanf, and Y. Zhang Non-negative matrix factorization a comprehensive review IEEE Trans. Knowl. Data Eng. 29 2013 1336 1353
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.29 , pp. 1336-1353
    • Wanf, Y.1    Zhang, Y.2
  • 16
    • 34247557079 scopus 로고    scopus 로고
    • Dynamic texture recognition using local binary patterns with an application to facial expression
    • G. Zhao, and M. Pietickaine Dynamic texture recognition using local binary patterns with an application to facial expression IEEE Trans. Pattern Anal. Mach. Intell. 29 2007 915 928
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , pp. 915-928
    • Zhao, G.1    Pietickaine, M.2
  • 19
    • 0031249873 scopus 로고    scopus 로고
    • Recognizing facial expressions in image sequences using local parameterized models of image motion
    • M. Black, and Y. Yacoob Recognizing facial expressions in image sequences using local parameterized models of image motion Int. J. Comput. Vis. 25 1997 23 48
    • (1997) Int. J. Comput. Vis. , vol.25 , pp. 23-48
    • Black, M.1    Yacoob, Y.2
  • 26
    • 84931591770 scopus 로고    scopus 로고
    • Three classes of deep learning architectures and their applications: A tutorial survey
    • L. Deng, Three classes of deep learning architectures and their applications: a tutorial survey, in: APSIPA Transactions on Signal and Information Processing, 2012.
    • (2012) APSIPA Transactions on Signal and Information Processing
    • Deng, L.1
  • 28
    • 34548250123 scopus 로고    scopus 로고
    • Unbiased split selection for classification trees based on the Gini index
    • C. Strobl, A.L. Boulesteix, and T. Augustin Unbiased split selection for classification trees based on the Gini index Comput. Stat. Data Anal. 52 2007 483 501
    • (2007) Comput. Stat. Data Anal. , vol.52 , pp. 483-501
    • Strobl, C.1    Boulesteix, A.L.2    Augustin, T.3
  • 29
    • 84861776914 scopus 로고    scopus 로고
    • Multi-column deep neural network for traffic sign classification
    • D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber Multi-column deep neural network for traffic sign classification Neural Netw. 32 2012 333 338
    • (2012) Neural Netw. , vol.32 , pp. 333-338
    • Ciresan, D.1    Meier, U.2    Masci, J.3    Schmidhuber, J.4
  • 30
    • 77958123122 scopus 로고    scopus 로고
    • A natural visible and infrared facial expression database for expression recognition and emotion inference
    • S. Wang, Z. Liu, and S. Lv A natural visible and infrared facial expression database for expression recognition and emotion inference IEEE Trans. Multimed. 12 2010 682 691
    • (2010) IEEE Trans. Multimed. , vol.12 , pp. 682-691
    • Wang, S.1    Liu, Z.2    Lv, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.