메뉴 건너뛰기




Volumn 74, Issue 1, 2015, Pages 397-412

Monthly and seasonal drought forecasting using statistical neural networks

Author keywords

Drought; Forecasting; Generalized regression network; Gorganroud Basin; Multi layer perceptron network; Radial basis function network

Indexed keywords

DROUGHT; FORECASTING; FUNCTIONS; NETWORK LAYERS; NEURAL NETWORKS; PRECIPITATION (METEOROLOGY); RECURSIVE FUNCTIONS; REGRESSION ANALYSIS; TIME MEASUREMENT; WEATHER FORECASTING;

EID: 84931565528     PISSN: 18666280     EISSN: 18666299     Source Type: Journal    
DOI: 10.1007/s12665-015-4047-x     Document Type: Article
Times cited : (59)

References (65)
  • 1
    • 84877012671 scopus 로고    scopus 로고
    • Prediction of drought in dry lands through feedforward artificial neural network abilities
    • Abarghouei HB, Kousari MR, Zarch MAA (2013) Prediction of drought in dry lands through feedforward artificial neural network abilities. Arab J Geosci 6(5):1417–1433. doi:10.1007/s12517-011-0445-x
    • (2013) Arab J Geosci , vol.6 , Issue.5 , pp. 1417-1433
    • Abarghouei, H.B.1    Kousari, M.R.2    Zarch, M.A.A.3
  • 2
    • 84904345050 scopus 로고    scopus 로고
    • Characterizing land condition variability in Northern China from 1982 to 2011
    • An Y, Gao W, Gao Z (2014) Characterizing land condition variability in Northern China from 1982 to 2011. Environ Earth Sci 72(3):663–676. doi:10.1007/s12665-013-2987-6
    • (2014) Environ Earth Sci , vol.72 , Issue.3 , pp. 663-676
    • An, Y.1    Gao, W.2    Gao, Z.3
  • 3
    • 78650308901 scopus 로고    scopus 로고
    • An approach for probabilistic hydrological drought forecasting
    • Araghinejad S (2011) An approach for probabilistic hydrological drought forecasting. Water Resour Manag 25(1):191–200. doi:10.1007/s11269-010-9694-9
    • (2011) Water Resour Manag , vol.25 , Issue.1 , pp. 191-200
    • Araghinejad, S.1
  • 5
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: preliminary concepts
    • ASCE Task Committee (2000) Artificial neural networks in hydrology. I: preliminary concepts. J Hydrol Eng 5(2):115–123. doi:10.1061/(ASCE)1084-0699(2000)5:2(115)
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 115-123
  • 6
    • 84875895891 scopus 로고    scopus 로고
    • Drought forecasting using an aggregated drought index and artificial neural network
    • Barua S, Perera B, Ng A, Tran D (2010) Drought forecasting using an aggregated drought index and artificial neural network. J Water Clim Change 1(3):193–206. doi:10.2166/wcc.2010.000
    • (2010) J Water Clim Change , vol.1 , Issue.3 , pp. 193-206
    • Barua, S.1    Perera, B.2    Ng, A.3    Tran, D.4
  • 7
    • 84876820915 scopus 로고    scopus 로고
    • Artificial neural network-based drought forecasting using a nonlinear aggregated drought index
    • Barua S, Ng AWM, Perera BJC (2012) Artificial neural network-based drought forecasting using a nonlinear aggregated drought index. J Hydrol Eng 17(12):1408–1413. doi:10.1061/(ASCE)HE.1943-5584.0000574
    • (2012) J Hydrol Eng , vol.17 , Issue.12 , pp. 1408-1413
    • Barua, S.1    Ng, A.W.M.2    Perera, B.J.C.3
  • 9
    • 0036478261 scopus 로고    scopus 로고
    • A neural networks approach for deriving irrigation reservoir operating rules
    • Cancelliere A, Giuliano G, Ancarani A, Rossi G (2002) A neural networks approach for deriving irrigation reservoir operating rules. Water Resour Manag 16(1):71–88. doi:10.1023/A:1015563820136
    • (2002) Water Resour Manag , vol.16 , Issue.1 , pp. 71-88
    • Cancelliere, A.1    Giuliano, G.2    Ancarani, A.3    Rossi, G.4
  • 10
    • 34247584087 scopus 로고    scopus 로고
    • Drought forecasting using the standardized precipitation index
    • Cancelliere A, Di Mauro G, Bonaccorso B, Rossi G (2007) Drought forecasting using the standardized precipitation index. Water Resour Manag 21(5):801–819. doi:10.1007/s11269-006-9062-y
    • (2007) Water Resour Manag , vol.21 , Issue.5 , pp. 801-819
    • Cancelliere, A.1    Di Mauro, G.2    Bonaccorso, B.3    Rossi, G.4
  • 11
    • 84872305578 scopus 로고    scopus 로고
    • Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks
    • Ceryan N, Okkan U, Kesimal A (2013) Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks. Environ Earth Sci 68(3):807–819. doi:10.1007/s12665-012-1783-z
    • (2013) Environ Earth Sci , vol.68 , Issue.3 , pp. 807-819
    • Ceryan, N.1    Okkan, U.2    Kesimal, A.3
  • 12
    • 27944503514 scopus 로고    scopus 로고
    • Generalized regression neural network in monthly flow forecasting
    • Cigizoglu HK (2005) Generalized regression neural network in monthly flow forecasting. Civil Eng Environ Syst 22(2):71–81. doi:10.1080/10286600500126256
    • (2005) Civil Eng Environ Syst , vol.22 , Issue.2 , pp. 71-81
    • Cigizoglu, H.K.1
  • 13
    • 27544493548 scopus 로고    scopus 로고
    • Generalized regression neural network in modelling river sediment yield
    • Cigizoglu HK, Alp M (2006) Generalized regression neural network in modelling river sediment yield. Adv Eng Softw 37(2):63–68. doi:10.1016/j.advengsoft.2005.05.002
    • (2006) Adv Eng Softw , vol.37 , Issue.2 , pp. 63-68
    • Cigizoglu, H.K.1    Alp, M.2
  • 14
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural networks
    • Daliakopoulos IN, Coulibaly P, Tsanis IK (2005) Groundwater level forecasting using artificial neural networks. J Hydrol 309(1):229–240. doi:10.1016/j.jhydrol.2004.12.001
    • (2005) J Hydrol , vol.309 , Issue.1 , pp. 229-240
    • Daliakopoulos, I.N.1    Coulibaly, P.2    Tsanis, I.K.3
  • 16
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall runoff modeling
    • Dawson CW, Wilby R (1998) An artificial neural network approach to rainfall runoff modeling. Hydrol Sci J 43:47–66. doi:10.1080/02626660209492996
    • (1998) Hydrol Sci J , vol.43 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 17
    • 84912113140 scopus 로고    scopus 로고
    • Trend analysis and uncertainties of mean surface air temperature, precipitation and extreme indices in CMIP3 GCMs in Distrito Federal, Brazil
    • de Amorim Borges P, Barfus K, Weiss H, Bernhofer C (2014) Trend analysis and uncertainties of mean surface air temperature, precipitation and extreme indices in CMIP3 GCMs in Distrito Federal, Brazil. Environ Earth Sci 72(12):4817–4833. doi:10.1007/s12665-014-3301-y
    • (2014) Environ Earth Sci , vol.72 , Issue.12 , pp. 4817-4833
    • de Amorim, B.P.1    Barfus, K.2    Weiss, H.3    Bernhofer, C.4
  • 18
    • 84891662512 scopus 로고    scopus 로고
    • Analysis of drought in the region of Abruzzo (Central Italy) by the standardized precipitation index
    • Di Lena B, Vergni L, Antenucci F, Todisco F, Mannocchi F (2014) Analysis of drought in the region of Abruzzo (Central Italy) by the standardized precipitation index. Theor Appl Climatol 115(1–2):41–52. doi:10.1007/s00704-013-0876-2
    • (2014) Theor Appl Climatol , vol.115 , Issue.1-2 , pp. 41-52
    • Di Lena, B.1    Vergni, L.2    Antenucci, F.3    Todisco, F.4    Mannocchi, F.5
  • 19
    • 0035116580 scopus 로고    scopus 로고
    • River flow forecasting using artificial neural networks
    • Dibike YB, Solomatine DP (2001) River flow forecasting using artificial neural networks. Phys Chem Earth Part B 26(1):1–7. doi:10.1016/S1464-1909(01)85005-X
    • (2001) Phys Chem Earth Part B , vol.26 , Issue.1
    • Dibike, Y.B.1    Solomatine, D.P.2
  • 20
    • 78650075506 scopus 로고    scopus 로고
    • Application of linear stochastic models for drought forecasting in the Büyük Menderes river basin, western Turkey
    • Durdu ÖF (2010) Application of linear stochastic models for drought forecasting in the Büyük Menderes river basin, western Turkey. Stoch Env Res Risk Assess 24(8):1145–1162
    • (2010) Stoch Env Res Risk Assess , vol.24 , Issue.8 , pp. 1145-1162
    • Durdu, Ö.F.1
  • 21
    • 79955067051 scopus 로고    scopus 로고
    • Application of global SST and SLP data for drought forecasting on Tehran plain using data mining and ANFIS techniques
    • Farokhnia A, Morid S, Byun HR (2011) Application of global SST and SLP data for drought forecasting on Tehran plain using data mining and ANFIS techniques. Theor Appl Climatol 104(1–2):71–81. doi:10.1007/s00704-010-0317-4
    • (2011) Theor Appl Climatol , vol.104 , Issue.1-2 , pp. 71-81
    • Farokhnia, A.1    Morid, S.2    Byun, H.R.3
  • 22
    • 45449117724 scopus 로고    scopus 로고
    • Hamed KH (2008) Discussion of “To prewhiten or not to prewhiten in trend analysis?” 667–668
    • Hamed KH (2008) Discussion of “To prewhiten or not to prewhiten in trend analysis?” 667–668
  • 23
    • 62849115490 scopus 로고    scopus 로고
    • Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data
    • Hamed KH (2009) Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. J Hydrol 368(1):143–155. doi:10.1016/j.jhydrol.2009.01.040
    • (2009) J Hydrol , vol.368 , Issue.1 , pp. 143-155
    • Hamed, K.H.1
  • 24
    • 0032579286 scopus 로고    scopus 로고
    • A modified Mann–Kendall trend test for autocorrelated data
    • Hamed KH, Ramachandra Rao A (1998) A modified Mann–Kendall trend test for autocorrelated data. J Hydrol 204(1):182–196. doi:10.1016/S0022-1694(97)00125-X
    • (1998) J Hydrol , vol.204 , Issue.1 , pp. 182-196
    • Hamed, K.H.1    Ramachandra Rao, A.2
  • 25
    • 0000760175 scopus 로고    scopus 로고
    • Monitoring the 1996 drought using the standardized precipitation index
    • Hayes MJ, Svoboda MD, Wilhite DA, Vanyarkho OV (1999) Monitoring the 1996 drought using the standardized precipitation index. Bull Am Meteorol Soc 80:429–438. doi:10.1175/1520-0477
    • (1999) Bull Am Meteorol Soc , vol.80 , pp. 429-438
    • Hayes, M.J.1    Svoboda, M.D.2    Wilhite, D.A.3    Vanyarkho, O.V.4
  • 26
    • 84897607933 scopus 로고    scopus 로고
    • Standardized precipitation evaporation index (SPEI)-based drought assessment in semi-arid south Texas
    • Hernandez EA, Uddameri V (2014) Standardized precipitation evaporation index (SPEI)-based drought assessment in semi-arid south Texas. Environ Earth Sci 71(6):2491–2501. doi:10.1007/s12665-013-2897-7
    • (2014) Environ Earth Sci , vol.71 , Issue.6 , pp. 2491-2501
    • Hernandez, E.A.1    Uddameri, V.2
  • 27
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornick K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Networks 2(5):359–366. doi:10.1016/0893-6080(89)90020-8
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornick, K.1    Stinchcombe, M.2    White, H.3
  • 28
    • 84919843002 scopus 로고    scopus 로고
    • Monthly karstic spring flow forecasting using a sequential gaussian simulation technique
    • Hosseini SM, Mahjouri N, Bagheri S (2014) Monthly karstic spring flow forecasting using a sequential gaussian simulation technique. Environ Earth Sci 72(9):3531–3548. doi:10.1007/s12665-014-3262-1
    • (2014) Environ Earth Sci , vol.72 , Issue.9 , pp. 3531-3548
    • Hosseini, S.M.1    Mahjouri, N.2    Bagheri, S.3
  • 29
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: generalisation beyond the calibration range
    • Imrie CE, Durucan S, Korre A (2000) River flow prediction using artificial neural networks: generalisation beyond the calibration range. J Hydrol 233(1):138–153. doi:10.1016/S0022-1694(00)00228-6
    • (2000) J Hydrol , vol.233 , Issue.1 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 30
    • 80052967732 scopus 로고    scopus 로고
    • Towards the harmonization of water-related policies for managing drought risks across the EU
    • Kampragou E, Apostolaki S, Manoli E, Froebrich J, Assimacopoulos D (2011) Towards the harmonization of water-related policies for managing drought risks across the EU. Environ Sci Policy 14(7):815–824. doi:10.1016/j.envsci.2011.04.001
    • (2011) Environ Sci Policy , vol.14 , Issue.7 , pp. 815-824
    • Kampragou, E.1    Apostolaki, S.2    Manoli, E.3    Froebrich, J.4    Assimacopoulos, D.5
  • 32
    • 84939933642 scopus 로고    scopus 로고
    • Prediction of water pollution sources using artificial neural networks in the study areas of Sivas, Karabük and Bartın (Turkey)
    • Keskin TE, Düğenci M, Kaçaroğlu F (2014) Prediction of water pollution sources using artificial neural networks in the study areas of Sivas, Karabük and Bartın (Turkey). Environ Earth Sci. doi:10.1007/s12665-014-3784-6
    • (2014) Environ Earth Sci
    • Keskin, T.E.1    Düğenci, M.2    Kaçaroğlu, F.3
  • 33
    • 0036635791 scopus 로고    scopus 로고
    • Estimating evapotranspiration using artificial neural network
    • Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO (2002) Estimating evapotranspiration using artificial neural network. J Irrig Drain Eng 128(4):224–233. doi:10.1061/(ASCE)0733-9437(2002)128:4(224)
    • (2002) J Irrig Drain Eng , vol.128 , Issue.4 , pp. 224-233
    • Kumar, M.1    Raghuwanshi, N.S.2    Singh, R.3    Wallender, W.W.4    Pruitt, W.O.5
  • 34
    • 1642387025 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using radial basis function network
    • Lin GF, Chen LH (2004) A non-linear rainfall-runoff model using radial basis function network. J Hydrol 289(1):1–8. doi:10.1016/j.jhydrol.2003.10.015
    • (2004) J Hydrol , vol.289 , Issue.1
    • Lin, G.F.1    Chen, L.H.2
  • 35
    • 34347402605 scopus 로고    scopus 로고
    • Spatial and temporal analysis of drought in Greece using the standardized precipitation index (SPI)
    • Livada I, Assimakopoulos VD (2007) Spatial and temporal analysis of drought in Greece using the standardized precipitation index (SPI). Theor Appl Climatol 89(3–4):143–153. doi:10.1007/s00704-005-0227-z
    • (2007) Theor Appl Climatol , vol.89 , Issue.3-4 , pp. 143-153
    • Livada, I.1    Assimakopoulos, V.D.2
  • 36
    • 0031779744 scopus 로고    scopus 로고
    • Long-term analysis and short-term forecasting of dry spells by Palmer drought severity index
    • Lohani VK, Loganathan GV, Mostaghimi S (1998) Long-term analysis and short-term forecasting of dry spells by Palmer drought severity index. Nord Hydrol 29(1):21–40. doi:10.2166/nh.1998.002
    • (1998) Nord Hydrol , vol.29 , Issue.1 , pp. 21-40
    • Lohani, V.K.1    Loganathan, G.V.2    Mostaghimi, S.3
  • 37
    • 84900649183 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks, Bayesian neural networks and adaptive neuro-fuzzy inference system in groundwater level prediction
    • Maiti S, Tiwari RK (2014) A comparative study of artificial neural networks, Bayesian neural networks and adaptive neuro-fuzzy inference system in groundwater level prediction. Environ Earth Sci 71(7):3147–3160. doi:10.1007/s12665-013-2702-7
    • (2014) Environ Earth Sci , vol.71 , Issue.7 , pp. 3147-3160
    • Maiti, S.1    Tiwari, R.K.2
  • 38
    • 78249258408 scopus 로고    scopus 로고
    • Analysis of multidimensional aspects of agricultural droughts in Zimbabwe using the standardized precipitation index (SPI)
    • Manatsa D, Mukwada G, Siziba E, Chinyanganya T (2010) Analysis of multidimensional aspects of agricultural droughts in Zimbabwe using the standardized precipitation index (SPI). Theor Appl Climatol 102(3–4):287–305. doi:10.1007/s00704-010-0262-2
    • (2010) Theor Appl Climatol , vol.102 , Issue.3-4 , pp. 287-305
    • Manatsa, D.1    Mukwada, G.2    Siziba, E.3    Chinyanganya, T.4
  • 39
    • 0000570668 scopus 로고
    • Non-parametric test against trend
    • Mann HB (1945) Non-parametric test against trend. Econometrica 13:245–259
    • (1945) Econometrica , vol.13 , pp. 245-259
    • Mann, H.B.1
  • 41
    • 0036719180 scopus 로고    scopus 로고
    • Contribution of neural networks for modeling trihalomethanes occurrence in drinking water
    • Milot J, Rodriguez MJ, Sérodes JB (2002) Contribution of neural networks for modeling trihalomethanes occurrence in drinking water. J Water Resour Plan Manag 128(5):370–376. doi:10.1061/(ASCE)07339496(2002)128:5(370)
    • (2002) J Water Resour Plan Manag , vol.128 , Issue.5 , pp. 370-376
    • Milot, J.1    Rodriguez, M.J.2    Sérodes, J.B.3
  • 42
    • 29144477214 scopus 로고    scopus 로고
    • Drought forecasting using stochastic models
    • Mishra AK, Desai VR (2005) Drought forecasting using stochastic models. Stoch Env Res Risk Assess 19(5):326–339. doi:10.1007/s00477-005-0238-4
    • (2005) Stoch Env Res Risk Assess , vol.19 , Issue.5 , pp. 326-339
    • Mishra, A.K.1    Desai, V.R.2
  • 43
    • 33747853860 scopus 로고    scopus 로고
    • Drought forecasting using feed-forward recursive neural network
    • Mishra AK, Desai VR (2006) Drought forecasting using feed-forward recursive neural network. Ecol Model 198(1):127–138. doi:10.1016/j.ecolmodel.2006.04.017
    • (2006) Ecol Model , vol.198 , Issue.1 , pp. 127-138
    • Mishra, A.K.1    Desai, V.R.2
  • 44
    • 36348930024 scopus 로고    scopus 로고
    • Drought forecasting using a hybrid stochastic and neural network model
    • Mishra AK, Desai VR, Singh VP (2007) Drought forecasting using a hybrid stochastic and neural network model. J Hydrol Eng 12(6):626–638. doi:10.1061/(ASCE)10840699(2007)12:6(626)
    • (2007) J Hydrol Eng , vol.12 , Issue.6 , pp. 626-638
    • Mishra, A.K.1    Desai, V.R.2    Singh, V.P.3
  • 45
    • 37249024658 scopus 로고    scopus 로고
    • Drought forecasting using artificial neural networks and time series of drought indices
    • Morid S, Smakhtin V, Bagherzadeh K (2007) Drought forecasting using artificial neural networks and time series of drought indices. Int J Climatol 27(15):2103–2111. doi:10.1061/(ASCE)1084-0699(2007)12:6(626)
    • (2007) Int J Climatol , vol.27 , Issue.15 , pp. 2103-2111
    • Morid, S.1    Smakhtin, V.2    Bagherzadeh, K.3
  • 46
    • 0034161578 scopus 로고    scopus 로고
    • Neural network-based simulation–optimization model for reservoir operation
    • Neelakantan TR, Pundarikanthan NV (2000) Neural network-based simulation–optimization model for reservoir operation. J Water Resour Plan Manag 126(2):57–64. doi:10.1061/(ASCE)0733-9496(2000)126:2(57)
    • (2000) J Water Resour Plan Manag , vol.126 , Issue.2 , pp. 57-64
    • Neelakantan, T.R.1    Pundarikanthan, N.V.2
  • 47
    • 0001238353 scopus 로고
    • WMO’s role in the international decade for natural disaster reduction
    • Obasi GOP (1994) WMO’s role in the international decade for natural disaster reduction. Bull Am Meteorol Soc 75(9):1655–1661
    • (1994) Bull Am Meteorol Soc , vol.75 , Issue.9 , pp. 1655-1661
    • Obasi, G.O.P.1
  • 48
    • 0030224015 scopus 로고    scopus 로고
    • Deriving a general operating policy for reservoirs using neural network
    • Raman H, Chandramouli V (1996) Deriving a general operating policy for reservoirs using neural network. J Water Resour Plan Manag 122(5):342–347. doi:10.1061/(ASCE)0733-9496(1996)122:5(342)
    • (1996) J Water Resour Plan Manag , vol.122 , Issue.5 , pp. 342-347
    • Raman, H.1    Chandramouli, V.2
  • 49
    • 84864478245 scopus 로고    scopus 로고
    • MLP-based drought forecasting in different climatic regions
    • Rezaeian-Zadeh M, Tabari H (2012) MLP-based drought forecasting in different climatic regions. Theor Appl Climatol 109(3–4):407–414. doi:10.1007/s00704-012-0592-3
    • (2012) Theor Appl Climatol , vol.109 , Issue.3-4 , pp. 407-414
    • Rezaeian-Zadeh, M.1    Tabari, H.2
  • 50
    • 33144479513 scopus 로고    scopus 로고
    • Artificial neural network modeling of dissolved oxygen in a wetland pond: the case of Hovi, Finland
    • Schmid BH, Koskiaho J (2006) Artificial neural network modeling of dissolved oxygen in a wetland pond: the case of Hovi, Finland. J Hydrol Eng 11(2):188–192. doi:10.1061/(ASCE)1084-0699(2006)11:2(188)
    • (2006) J Hydrol Eng , vol.11 , Issue.2 , pp. 188-192
    • Schmid, B.H.1    Koskiaho, J.2
  • 51
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht DF (1991) A general regression neural network. Neural Netw, IEEE Trans on 2(6):568–576. doi:10.1109/72.97934
    • (1991) Neural Netw, IEEE Trans on , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 52
    • 0036843660 scopus 로고    scopus 로고
    • Modelling evaporation using an artificial neural network algorithm
    • Sudheer KP, Gosain AK, Mohana Rangan D, Saheb SM (2002) Modelling evaporation using an artificial neural network algorithm. Hydrol Process 16(16):3189–3202. doi:10.1002/hyp.1096
    • (2002) Hydrol Process , vol.16 , Issue.16 , pp. 3189-3202
    • Sudheer, K.P.1    Gosain, A.K.2    Mohana Rangan, D.3    Saheb, S.M.4
  • 53
    • 0344035546 scopus 로고    scopus 로고
    • Evaluation of neural networks for modeling nitrate concentrations in rivers
    • Suen JP, Eheart JW (2003) Evaluation of neural networks for modeling nitrate concentrations in rivers. J Water Resour Plan Manag 129(6):505–510. doi:10.1061/(ASCE)0733-9496(2003)129:6(505)
    • (2003) J Water Resour Plan Manag , vol.129 , Issue.6 , pp. 505-510
    • Suen, J.P.1    Eheart, J.W.2
  • 54
    • 0000393458 scopus 로고
    • Feedforward neural nets as models for time series forecasting
    • Tang Z, Fishwick PA (1993) Feedforward neural nets as models for time series forecasting. ORSA J Comput 5(4):374–385
    • (1993) ORSA J Comput , vol.5 , Issue.4 , pp. 374-385
    • Tang, Z.1    Fishwick, P.A.2
  • 55
    • 0001643727 scopus 로고
    • A note on the gamma distribution
    • Thom HC (1958) A note on the gamma distribution. Mon Weather Rev 86(4):117–122
    • (1958) Mon Weather Rev , vol.86 , Issue.4 , pp. 117-122
    • Thom, H.C.1
  • 56
    • 0346875564 scopus 로고    scopus 로고
    • Forecasting of reference evapotranspiration by artificial neural networks
    • Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting of reference evapotranspiration by artificial neural networks. J Irrig Drain Eng 129(6):454–457. doi:10.1061/(ASCE)0733-9437(2003)129:6(454)
    • (2003) J Irrig Drain Eng , vol.129 , Issue.6 , pp. 454-457
    • Trajkovic, S.1    Todorovic, B.2    Stankovic, M.3
  • 57
    • 34247573991 scopus 로고    scopus 로고
    • Regional drought assessment based on the reconnaissance drought index (RDI)
    • Tsakiris G, Pangalou D, Vangelis H (2007) Regional drought assessment based on the reconnaissance drought index (RDI). Water Resour Manag 21:821–833. doi:10.1007/s11269-006-9105-4
    • (2007) Water Resour Manag , vol.21 , pp. 821-833
    • Tsakiris, G.1    Pangalou, D.2    Vangelis, H.3
  • 58
    • 84925507601 scopus 로고    scopus 로고
    • Long-term rainfall trends in Serra da Mantiqueira environmental protection area, southeast Brazil
    • Vilanova MRN (2014) Long-term rainfall trends in Serra da Mantiqueira environmental protection area, southeast Brazil. Environ Earth Sci. doi:10.1007/s12665-014-3763-y
    • (2014) Environ Earth Sci
    • Vilanova, M.R.N.1
  • 60
    • 34247641725 scopus 로고    scopus 로고
    • Understanding the complex impacts of drought: a key to enhancing drought mitigation and preparedness
    • Wilhite DA, Svoboda MD, Hayes MJ (2007) Understanding the complex impacts of drought: a key to enhancing drought mitigation and preparedness. Water Resour Manag 21(5):763–774. doi:10.1007/s11269-006-9076-5
    • (2007) Water Resour Manag , vol.21 , Issue.5 , pp. 763-774
    • Wilhite, D.A.1    Svoboda, M.D.2    Hayes, M.J.3
  • 61
    • 0001242140 scopus 로고
    • Time series forecasting using backpropagation neural networks
    • Wong FS (1991) Time series forecasting using backpropagation neural networks. Neurocomputing 2:147–159. doi:10.1016/0925-2312(91)90045-D
    • (1991) Neurocomputing , vol.2 , pp. 147-159
    • Wong, F.S.1
  • 62
    • 79960551824 scopus 로고    scopus 로고
    • Drought analysis using multi-scale standardized precipitation index in the Han River Basin, China
    • Xu YP, Lin SJ, Huang Y, Zhang QQ, Ran QH (2011) Drought analysis using multi-scale standardized precipitation index in the Han River Basin, China. J Zhejiang Univer Sci A 12(6):483–494. doi:10.1631/jzus.A1000450
    • (2011) J Zhejiang Univer Sci A , vol.12 , Issue.6 , pp. 483-494
    • Xu, Y.P.1    Lin, S.J.2    Huang, Y.3    Zhang, Q.Q.4    Ran, Q.H.5
  • 63
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand CM, Burn DH, Simonovic SP (1999) Short term streamflow forecasting using artificial neural networks. J Hydrol 214(1):32–48. doi:10.1016/S0022-1694(98)00242-X
    • (1999) J Hydrol , vol.214 , Issue.1 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 64
    • 79551647968 scopus 로고    scopus 로고
    • Using the radial basis function network model to assess rocky desertification in northwest Guangxi, China
    • Zhang M, Wang K, Zhang C, Chen H, Liu H, Yue Y, Qi X (2011) Using the radial basis function network model to assess rocky desertification in northwest Guangxi, China. Environ Earth Sci 62(1):69–76. doi:10.1007/s12665-010-0498-2
    • (2011) Environ Earth Sci , vol.62 , Issue.1 , pp. 69-76
    • Zhang, M.1    Wang, K.2    Zhang, C.3    Chen, H.4    Liu, H.5    Yue, Y.6    Qi, X.7
  • 65
    • 84873138790 scopus 로고    scopus 로고
    • Analysis of drought condition and risk in Peninsular malaysia using standardised precipitation index
    • Zin WZW, Jemain AA, Ibrahim K (2013) Analysis of drought condition and risk in Peninsular malaysia using standardised precipitation index. Theor Appl Climatol 111(3–4):559–568. doi:10.1007/s00704-012-0682-2
    • (2013) Theor Appl Climatol , vol.111 , Issue.3-4 , pp. 559-568
    • Zin, W.Z.W.1    Jemain, A.A.2    Ibrahim, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.