메뉴 건너뛰기




Volumn 35, Issue 5, 2015, Pages 919-930

Application of the hyper-poisson generalized linear model for analyzing motor vehicle crashes

Author keywords

Dispersion parameter; Hyper Poisson; Underdispersion

Indexed keywords

DATA HANDLING; DISPERSIONS; HIGHWAY ACCIDENTS;

EID: 84931374239     PISSN: 02724332     EISSN: 15396924     Source Type: Journal    
DOI: 10.1111/risa.12296     Document Type: Article
Times cited : (8)

References (34)
  • 1
    • 77952089434 scopus 로고    scopus 로고
    • The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives
    • Lord D, Mannering F. The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives. Transportation Research - Part A, 2010; 44(5):291-305.
    • (2010) Transportation Research - Part A , vol.44 , Issue.5 , pp. 291-305
    • Lord, D.1    Mannering, F.2
  • 2
    • 31044449725 scopus 로고    scopus 로고
    • Accident prediction model for railway-highway interfaces
    • Oh J, Washington SP, Nam D. Accident prediction model for railway-highway interfaces. Accident Analysis & Prevention, 2006; 38(2):346-356.
    • (2006) Accident Analysis & Prevention , vol.38 , Issue.2 , pp. 346-356
    • Oh, J.1    Washington, S.P.2    Nam, D.3
  • 5
    • 0031503976 scopus 로고    scopus 로고
    • Count data regression using series expansions: With applications
    • Cameron AC, Johansson P. Count data regression using series expansions: With applications. Journal of Applied Econometrics, 1997; 12(3):203-223.
    • (1997) Journal of Applied Econometrics , vol.12 , Issue.3 , pp. 203-223
    • Cameron, A.C.1    Johansson, P.2
  • 8
    • 42749089792 scopus 로고    scopus 로고
    • Application of the Conway-Maxwell-Poisson generalized linear model for analyzing motor vehicle crashes
    • Lord D, Guikema SD, Geedipally S. Application of the Conway-Maxwell-Poisson generalized linear model for analyzing motor vehicle crashes. Accident Analysis & Prevention, 2008; 40(3):1123-1134.
    • (2008) Accident Analysis & Prevention , vol.40 , Issue.3 , pp. 1123-1134
    • Lord, D.1    Guikema, S.D.2    Geedipally, S.3
  • 9
    • 77955889152 scopus 로고    scopus 로고
    • Extension of the application of Conway-Maxwell-Poisson models: Analyzing traffic crash data exhibiting underdispersion
    • Lord D, Geedipally SR, Guikema SD. Extension of the application of Conway-Maxwell-Poisson models: Analyzing traffic crash data exhibiting underdispersion. Risk Analysis, 2010; 30(8):1268-1276.
    • (2010) Risk Analysis , vol.30 , Issue.8 , pp. 1268-1276
    • Lord, D.1    Geedipally, S.R.2    Guikema, S.D.3
  • 10
    • 84855399519 scopus 로고    scopus 로고
    • Examination of crash variances estimated by Poisson-Gamma and Conway-Maxwell-Poisson models
    • Geedipally SR, Lord D. Examination of crash variances estimated by Poisson-Gamma and Conway-Maxwell-Poisson models. Transportation Research Record, 2011; 2241:59-67.
    • (2011) Transportation Research Record , vol.2241 , pp. 59-67
    • Geedipally, S.R.1    Lord, D.2
  • 11
    • 77955896676 scopus 로고    scopus 로고
    • A flexible regression model for count data
    • Sellers KF, Shmueli G. A flexible regression model for count data. Annals of Applied Statistics, 2010; 4(2):943-961.
    • (2010) Annals of Applied Statistics , vol.4 , Issue.2 , pp. 943-961
    • Sellers, K.F.1    Shmueli, G.2
  • 14
    • 21844498143 scopus 로고
    • Duration dependence and dispersion in count-data models
    • Winkelmann R. Duration dependence and dispersion in count-data models. Journal of Business & Economic Statistics, 1995; 13(4):467-474.
    • (1995) Journal of Business & Economic Statistics , vol.13 , Issue.4 , pp. 467-474
    • Winkelmann, R.1
  • 17
    • 78049427543 scopus 로고    scopus 로고
    • Extended prediction models for crashes at roundabouts
    • Daniels S, Brijs T, Nuyts E, Wets G. Extended prediction models for crashes at roundabouts. Safety Science, 2011; 49(2):198-207.
    • (2011) Safety Science , vol.49 , Issue.2 , pp. 198-207
    • Daniels, S.1    Brijs, T.2    Nuyts, E.3    Wets, G.4
  • 18
    • 84895372431 scopus 로고
    • Double exponential-families and their use in generalized linear-regression
    • Efron B. Double exponential-families and their use in generalized linear-regression. Journal of the American Statistical Association, 1986; 81(395):709-721.
    • (1986) Journal of the American Statistical Association , vol.81 , Issue.395 , pp. 709-721
    • Efron, B.1
  • 21
    • 0035497764 scopus 로고    scopus 로고
    • Overdispersion in modeling accidents on road sections and in empirical Bayes estimation
    • Hauer E. Overdispersion in modeling accidents on road sections and in empirical Bayes estimation. Accident Analysis and Prevention, 2001; 33(6):799-808.
    • (2001) Accident Analysis and Prevention , vol.33 , Issue.6 , pp. 799-808
    • Hauer, E.1
  • 22
    • 0035476879 scopus 로고    scopus 로고
    • Identification of sites for road accident remedial work by Bayesian statistical methods: An example of uncertain inference
    • Heydecker BG, Wu J. Identification of sites for road accident remedial work by Bayesian statistical methods: An example of uncertain inference. Advances in Engineering Software, 2001; 32:859-869.
    • (2001) Advances in Engineering Software , vol.32 , pp. 859-869
    • Heydecker, B.G.1    Wu, J.2
  • 23
    • 1842428184 scopus 로고    scopus 로고
    • Modeling traffic-flow relationships at signalized intersections: Dispersion parameter, functional form and Bayes vs empirical Bayes
    • Miaou S-P, Lord D. Modeling traffic-flow relationships at signalized intersections: Dispersion parameter, functional form and Bayes vs empirical Bayes. Transportation Research Record, 2003; 1840:31-40.
    • (2003) Transportation Research Record , vol.1840 , pp. 31-40
    • Miaou, S.-P.1    Lord, D.2
  • 24
    • 34247463824 scopus 로고    scopus 로고
    • On the nature of over-dispersion in motor vehicle crash prediction models
    • Mitra S, Washington SP. On the nature of over-dispersion in motor vehicle crash prediction models. Accident Analysis and Prevention, 2007; 39(3):459-468.
    • (2007) Accident Analysis and Prevention , vol.39 , Issue.3 , pp. 459-468
    • Mitra, S.1    Washington, S.P.2
  • 25
    • 39849095134 scopus 로고    scopus 로고
    • A flexible count data regression model for risk analysis
    • Guikema SD, Coffelt JP. A flexible count data regression model for risk analysis. Risk Analysis, 2008; 28(1):213-223.
    • (2008) Risk Analysis , vol.28 , Issue.1 , pp. 213-223
    • Guikema, S.D.1    Coffelt, J.P.2
  • 27
    • 15044361554 scopus 로고    scopus 로고
    • Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter
    • Saha K, Paul S. Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. Biometrics, 2005; 61(1):179-185.
    • (2005) Biometrics , vol.61 , Issue.1 , pp. 179-185
    • Saha, K.1    Paul, S.2
  • 28
    • 79952440600 scopus 로고    scopus 로고
    • 1st ed. Washington, DC: AASHTO
    • American Association of State Highway and Transportation Officials (AASHTO). Highway Safety Manual, 1st ed. Washington, DC: AASHTO, 2010.
    • (2010) Highway Safety Manual
  • 29
    • 84855199947 scopus 로고    scopus 로고
    • R: Vienna: Austria: R Foundation for Statistical Computing
    • R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: Austria: R Foundation for Statistical Computing, 2011.
    • (2011) A Language and Environment for Statistical Computing
  • 30
    • 0003926451 scopus 로고    scopus 로고
    • The Prediction of Accidents on Digital Networks: Characteristics and Issues Related to the Application of Accident Prediction Models
    • Dissertation, Toronto, ON: University of Toronto
    • Lord, D. The Prediction of Accidents on Digital Networks: Characteristics and Issues Related to the Application of Accident Prediction Models. Dissertation, Toronto, ON: University of Toronto, 2000.
    • (2000)
    • Lord, D.1
  • 32
    • 0003486628 scopus 로고    scopus 로고
    • 9th ver. Cary, NC
    • SAS Institute Inc. SAS System for Windows, 9th ver. Cary, NC, 2002.
    • (2002) SAS System for Windows


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.