메뉴 건너뛰기




Volumn 43, Issue 6, 2015, Pages 1432-1442

An Effective Fractal-Tree Closure Model for Simulating Blood Flow in Large Arterial Networks

Author keywords

Arm network; Circle of Willis; Computational hemodynamics; Fractal arterial networks; Fractional modeling; Outflow boundary conditions

Indexed keywords

BLOOD; BOUNDARY CONDITIONS; CALIBRATION; COMPLEX NETWORKS; COMPUTER PROGRAMMING; COMPUTER SYSTEMS PROGRAMMING; FORESTRY; FRACTAL DIMENSION; FRACTALS; GALERKIN METHODS; HEMODYNAMICS; NON NEWTONIAN FLOW; PHYSIOLOGICAL MODELS; PHYSIOLOGY;

EID: 84930958633     PISSN: 00906964     EISSN: 15739686     Source Type: Journal    
DOI: 10.1007/s10439-014-1221-3     Document Type: Article
Times cited : (53)

References (29)
  • 1
    • 50049124185 scopus 로고    scopus 로고
    • Lumped parameter outflow models for 1D blood flow simulations: effect on pulse waves and parameter estimation
    • Alastruey, J., K. H. Parker, J. Peiró, and S. J. Sherwin. Lumped parameter outflow models for 1D blood flow simulations: effect on pulse waves and parameter estimation. Commun. Comput. Phys. 4:317–336, 2008.
    • (2008) Commun. Comput. Phys. , vol.4 , pp. 317-336
    • Alastruey, J.1    Parker, K.H.2    Peiró, J.3    Sherwin, S.J.4
  • 2
    • 84864089026 scopus 로고    scopus 로고
    • Identification of vascular territory resistances in one-dimensional hemodynamics simulations
    • COI: 1:STN:280:DC%2BC38jotVeqsA%3D%3D, PID: 227710
    • Blanco, P. J., S. M. Watanabe, and R. A. Feijóo. Identification of vascular territory resistances in one-dimensional hemodynamics simulations. J. Biomech. 45:2066–2073, 2012.
    • (2012) J. Biomech. , vol.45 , pp. 2066-2073
    • Blanco, P.J.1    Watanabe, S.M.2    Feijóo, R.A.3
  • 3
    • 74149084860 scopus 로고    scopus 로고
    • Branching patterns for arterioles and venules of the human cerebral cortex
    • COI: 1:CAS:528:DC%2BC3cXnvFOjsg%3D%3D, PID: 200052
    • Cassot, F., and F. Lauwers, S. Lorthois, P. Puwanarajah, V. Cances-Lauwers, and H. Duvernoy. Branching patterns for arterioles and venules of the human cerebral cortex. Brain Res. 1313:62–78, 2010.
    • (2010) Brain Res. , vol.1313 , pp. 62-78
    • Cassot, F.1    Lauwers, F.2    Lorthois, S.3    Puwanarajah, P.4    Cances-Lauwers, V.5    Duvernoy, H.6
  • 5
    • 84863987071 scopus 로고    scopus 로고
    • Boundary conditions for hemodynamics: the structured tree revisited
    • Cousins, W., and P.A. Gremaud. Boundary conditions for hemodynamics: The structured tree revisited. J. Comput. Phys. 231:6086–6096, 2012.
    • (2012) J. Comput. Phys. , vol.231 , pp. 6086-6096
    • Cousins, W.1    Gremaud, P.A.2
  • 6
    • 84884141406 scopus 로고    scopus 로고
    • A new physiological boundary condition for hemodynamics
    • Cousins, W., P. A. Gremaud, and D. M. Tartakovsky. A new physiological boundary condition for hemodynamics. SIAM J. Appl. Math. 73:1203–1223, 2013.
    • (2013) SIAM J. Appl. Math. , vol.73 , pp. 1203-1223
    • Cousins, W.1    Gremaud, P.A.2    Tartakovsky, D.M.3
  • 7
    • 51849148014 scopus 로고    scopus 로고
    • Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries
    • PID: 186770
    • Craiem, D. O., F. J. Rojo, J. M. Atienza, R. L. Armentano, and G. V. Guinea. Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys. Med. Biol. 53:4543, 2008.
    • (2008) Phys. Med. Biol. , vol.53 , pp. 4543
    • Craiem, D.O.1    Rojo, F.J.2    Atienza, J.M.3    Armentano, R.L.4    Guinea, G.V.5
  • 8
    • 23644445170 scopus 로고    scopus 로고
    • Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity
    • Doehring, T. C., A. D. Freed, E. O. Carew, I. Vesely, et al. Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. J. Biomech. Eng.-T. ASME 127:700, 2005.
    • (2005) J. Biomech. Eng.-T. ASME , vol.127 , pp. 700
    • Doehring, T.C.1    Freed, A.D.2    Carew, E.O.3    Vesely, I.4
  • 10
    • 60449108118 scopus 로고
    • Mechanical Properties of Living Tissues
    • Fung, Y. Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, 1993.
    • (1993) Springer-Verlag
    • Fung, Y.B.1
  • 11
    • 78650899555 scopus 로고    scopus 로고
    • Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study
    • COI: 1:STN:280:DC%2BC3M%2Fmt1Oltw%3D%3D, PID: 206616
    • Grinberg, L., E. Cheever, T. Anor, J. R. Madsen, and G. E. Karniadakis. Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study. Ann. Biomed. Eng. 39:297–309, 2011.
    • (2011) Ann. Biomed. Eng. , vol.39 , pp. 297-309
    • Grinberg, L.1    Cheever, E.2    Anor, T.3    Madsen, J.R.4    Karniadakis, G.E.5
  • 12
    • 84878518004 scopus 로고    scopus 로고
    • Parallel multiscale simulations of a brain aneurysm
    • PID: 237340
    • Grinberg, L., D. Fedosov, and G. E. Karniadakis. Parallel multiscale simulations of a brain aneurysm. J. Comput. Phys. 244:131–147, 2013.
    • (2013) J. Comput. Phys. , vol.244 , pp. 131-147
    • Grinberg, L.1    Fedosov, D.2    Karniadakis, G.E.3
  • 13
    • 49149085723 scopus 로고    scopus 로고
    • Outflow boundary conditions for arterial networks with multiple outlets
    • PID: 186128
    • Grinberg, L., and G. E. Karniadakis. Outflow boundary conditions for arterial networks with multiple outlets. Ann. Biomed. Eng. 36:1496–1514, 2008.
    • (2008) Ann. Biomed. Eng. , vol.36 , pp. 1496-1514
    • Grinberg, L.1    Karniadakis, G.E.2
  • 14
    • 0034983185 scopus 로고    scopus 로고
    • Arterial fraction of cerebral blood volume in humans measured by positron emission tomography
    • COI: 1:STN:280:DC%2BD38%2FitVagsw%3D%3D, PID: 114480
    • Ito, H., I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, and T. Okudera. Arterial fraction of cerebral blood volume in humans measured by positron emission tomography. Ann. Nucl. Med. 15:111–116, 2001.
    • (2001) Ann. Nucl. Med. , vol.15 , pp. 111-116
    • Ito, H.1    Kanno, I.2    Iida, H.3    Hatazawa, J.4    Shimosegawa, E.5    Tamura, H.6    Okudera, T.7
  • 15
    • 84895046700 scopus 로고    scopus 로고
    • Inverse problems in 1D hemodynamics on systemic networks: a sequential approach
    • COI: 1:STN:280:DC%2BC3sbotlGltg%3D%
    • Lombardi, D. Inverse problems in 1D hemodynamics on systemic networks: a sequential approach. Int. J. Numer. Methods Biomed. Eng. 30:160–179, 2014.
    • (2014) Int. J. Numer. Methods Biomed. Eng. , vol.30 , pp. 160-179
    • Lombardi, D.1
  • 17
    • 84930950290 scopus 로고    scopus 로고
    • McDonald, D. A. Blood flow in arteries 197
    • McDonald, D. A. Blood flow in arteries 1974.
  • 19
    • 0032932940 scopus 로고    scopus 로고
    • Olufsen, M. S. Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol.- Heart Circ Physiol. 276:H257–H268, 1999.
    • (1999) Physiol.- Heart Circ Physiol. , vol.276 , pp. 257-268
  • 20
    • 84898545946 scopus 로고    scopus 로고
    • Fractional-order viscoelasticity in one-dimensional blood flow models
    • PID: 244148
    • Perdikaris, P., and G. E. Karniadakis. Fractional-order viscoelasticity in one-dimensional blood flow models. Ann. Biomed. Eng. 42:1012–1023, 2014.
    • (2014) Ann. Biomed. Eng. , vol.42 , pp. 1012-1023
    • Perdikaris, P.1    Karniadakis, G.E.2
  • 21
    • 0027089966 scopus 로고
    • Blood viscosity in tube flow: dependence on diameter and hematocrit
    • COI: 1:STN:280:DyaK3s7ivVCruw%3D%3D, PID: 14819
    • Pries, A. R., D. Neuhaus, P. Gaehtgens, et al. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. 263:H1770–H1770, 1992.
    • (1992) Am. J. Physiol. , vol.263 , pp. 1770
    • Pries, A.R.1    Neuhaus, D.2    Gaehtgens, P.3
  • 23
    • 80052304983 scopus 로고    scopus 로고
    • Physiol.-Heart Circ
    • Reymond, P., Y. Bohraus, F. Perren, F. Lazeyras, and N. Stergiopulos. Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am. J. Physiol.-Heart Circ. Physiol. 301:1173–1182, 2011.
    • (2011) Physiol , vol.301 , pp. 1173-1182
    • Reymond, P.1    Bohraus, Y.2    Perren, F.3    Lazeyras, F.4
  • 24
    • 0344785789 scopus 로고    scopus 로고
    • One-dimensional modelling of a vascular network in space-time variables
    • Sherwin, S. J., V. Franke, J. Peiro, and K. H. Parker. One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47:217–250, 2003.
    • (2003) J. Eng. Math. , vol.47 , pp. 217-250
    • Sherwin, S.J.1    Franke, V.2    Peiro, J.3    Parker, K.H.4
  • 25
    • 33947377366 scopus 로고    scopus 로고
    • Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions
    • Steele, B. N., M. S. Olufsen, and C. A. Taylor. Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Comput. Methods Biomech. Biomed. Eng. 10:39–51, 2007.
    • (2007) Comput. Methods Biomech. Biomed. Eng. , vol.10 , pp. 39-51
    • Steele, B.N.1    Olufsen, M.S.2    Taylor, C.A.3
  • 26
    • 0026774222 scopus 로고
    • Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity
    • COI: 1:STN:280:DyaK3s%2FgvVyhsg%3D%3D, PID: 13948
    • VanBavel, E., and J. A. Spaan. Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity. Circ. Res. 71:1200–1212, 1992.
    • (1992) Circ. Res. , vol.71 , pp. 1200-1212
    • VanBavel, E.1    Spaan, J.A.2
  • 27
    • 84877589274 scopus 로고    scopus 로고
    • Mathematical model of blood flow in an anatomically detailed arterial network of the arm
    • Watanabe, S. M., P. J. Blanco, and R. A. Feijóo. Mathematical model of blood flow in an anatomically detailed arterial network of the arm. ESAIM Math. Model. Numer. Anal. 47:961–985, 2013.
    • (2013) ESAIM Math. Model. Numer. Anal. , vol.47 , pp. 961-985
    • Watanabe, S.M.1    Blanco, P.J.2    Feijóo, R.A.3
  • 28
    • 84878501762 scopus 로고    scopus 로고
    • Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network
    • PID: 237298
    • Xiao, N., J. D. Humphrey, and C. A. Figueroa. Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network. J. Comput. Phys. 244:22–40, 2013.
    • (2013) J. Comput. Phys. , vol.244 , pp. 22-40
    • Xiao, N.1    Humphrey, J.D.2    Figueroa, C.A.3
  • 29
    • 0033591016 scopus 로고    scopus 로고
    • On fractal properties of arterial trees
    • COI: 1:STN:280:DyaK1M3hsVakug%3D%3D, PID: 101960
    • Zamir, M. et al. On fractal properties of arterial trees. J. Theor. Biol. 197:517–526, 1999.
    • (1999) J. Theor. Biol. , vol.197 , pp. 517-526
    • Zamir, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.