메뉴 건너뛰기




Volumn 101, Issue , 2015, Pages 106-117

Predicting residential energy and water demand using publicly available data

Author keywords

Energy efficiency; Predictive modeling; Publicly available data; Residential; Utility usage

Indexed keywords

ENERGY UTILIZATION; FORECASTING; HOUSING; REGRESSION ANALYSIS;

EID: 84930943081     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2015.04.081     Document Type: Article
Times cited : (4)

References (21)
  • 4
    • 0027932103 scopus 로고
    • Energy-efficiency investments and public policy
    • A.B Jaffe, and R.N. Stavins Energy-efficiency investments and public policy Energy J 15 2 1994
    • (1994) Energy J , vol.15 , Issue.2
    • Jaffe, A.B.1    Stavins, R.N.2
  • 9
    • 70349645107 scopus 로고    scopus 로고
    • Household energy consumption: A study of the role of occupants
    • K. Steemers, and G.Y. Yun Household energy consumption: a study of the role of occupants Build Res Inform 37 5-6 2009 625 637
    • (2009) Build Res Inform , vol.37 , Issue.5-6 , pp. 625-637
    • Steemers, K.1    Yun, G.Y.2
  • 10
    • 79951512462 scopus 로고    scopus 로고
    • Behavioural, physical and socio-economic factors in household cooling energy consumption
    • G.Y. Yun, and K. Steemers Behavioural, physical and socio-economic factors in household cooling energy consumption Appl Energy 88 6 2011 2191 2200
    • (2011) Appl Energy , vol.88 , Issue.6 , pp. 2191-2200
    • Yun, G.Y.1    Steemers, K.2
  • 12
    • 78049485819 scopus 로고    scopus 로고
    • A high-resolution statistical model of residential energy end use characteristics for the United States
    • J. Min, Z. Hausfather, and Q.F. Lin A high-resolution statistical model of residential energy end use characteristics for the United States J Ind Ecol 14 5 2010 791 807
    • (2010) J Ind Ecol , vol.14 , Issue.5 , pp. 791-807
    • Min, J.1    Hausfather, Z.2    Lin, Q.F.3
  • 14
    • 70449455544 scopus 로고    scopus 로고
    • Energy saving and energy efficiency concepts for policy making
    • V. Oikonomou, F. Becchis, L. Steg, and D. Russolillo Energy saving and energy efficiency concepts for policy making Energy Pol 37 11 2009 4787 4796
    • (2009) Energy Pol , vol.37 , Issue.11 , pp. 4787-4796
    • Oikonomou, V.1    Becchis, F.2    Steg, L.3    Russolillo, D.4
  • 15
    • 84860223914 scopus 로고    scopus 로고
    • A review on the prediction of building energy consumption
    • H. Zhao, and F. Magoulès A review on the prediction of building energy consumption Renew Sustain Energy Rev 16 6 2012 3586 3592
    • (2012) Renew Sustain Energy Rev , vol.16 , Issue.6 , pp. 3586-3592
    • Zhao, H.1    Magoulès, F.2
  • 17
    • 0036469966 scopus 로고    scopus 로고
    • Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks
    • M. Aydinalp, V. Ismet Ugursal, and A.S. Fung Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks Appl Energy 71 2 2002 87 110
    • (2002) Appl Energy , vol.71 , Issue.2 , pp. 87-110
    • Aydinalp, M.1    Ismet Ugursal, V.2    Fung, A.S.3
  • 19
    • 42749089472 scopus 로고    scopus 로고
    • Machine learning based switching model for electricity load forecasting
    • S. Fan, L. Chen, and W.-J. Lee Machine learning based switching model for electricity load forecasting Energy Convers Manage 49 6 2008 1331 1344
    • (2008) Energy Convers Manage , vol.49 , Issue.6 , pp. 1331-1344
    • Fan, S.1    Chen, L.2    Lee, W.-J.3
  • 20
    • 34250170125 scopus 로고    scopus 로고
    • Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks
    • G.K.F. Tso, and K.K.W. Yau Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks Energy 32 9 2007 1761 1768
    • (2007) Energy , vol.32 , Issue.9 , pp. 1761-1768
    • Tso, G.K.F.1    Yau, K.K.W.2
  • 21
    • 84861802647 scopus 로고    scopus 로고
    • Predicting future hourly residential electrical consumption: A machine learning case study
    • R.E. Edwards, J. New, and L.E. Parker Predicting future hourly residential electrical consumption: a machine learning case study Energy Build 49 2012 591 603
    • (2012) Energy Build , vol.49 , pp. 591-603
    • Edwards, R.E.1    New, J.2    Parker, L.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.