-
1
-
-
84901193930
-
Black phosphorus field-effect transistors
-
Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, et al.Black phosphorus field-effect transistors. Nat Nanotech. 2014; 9:372–7.
-
(2014)
Nat Nanotech
, vol.9
, pp. 372-377
-
-
Li, L.1
Yu, Y.2
Ye, G.J.3
Ge, Q.4
Ou, X.5
Wu, H.6
-
2
-
-
84898060562
-
Phosphorene: an unexplored 2d semiconductor with a high hole mobility
-
Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, et al.Phosphorene: an unexplored 2d semiconductor with a high hole mobility. ACS Nano. 2014; 8:4033–041.
-
(2014)
ACS Nano
, vol.8
, pp. 4033-4041
-
-
Liu, H.1
Neal, A.T.2
Zhu, Z.3
Luo, Z.4
Xu, X.5
Tománek, D.6
-
3
-
-
84910654596
-
Anisotropic elastic behaviour and one-dimensional metal in phosphorene
-
Ding Y, Wang Y, Shi L, Xu Z, Ni J. Anisotropic elastic behaviour and one-dimensional metal in phosphorene. Phys Status Solidi RRL. 2014; 8:939–42.
-
(2014)
Phys Status Solidi RRL
, vol.8
, pp. 939-942
-
-
Ding, Y.1
Wang, Y.2
Shi, L.3
Xu, Z.4
Ni, J.5
-
4
-
-
84961291571
-
Semiconductor to metal transition in bilayer phosphorene under normal compressive strain
-
Manjanath A, Samanta A, Pandey T, Singh AK. Semiconductor to metal transition in bilayer phosphorene under normal compressive strain. Nanotechnology. 2015; 26:075701.
-
(2015)
Nanotechnology
, vol.75701
, pp. 26
-
-
Manjanath, A.1
Samanta, A.2
Pandey, T.3
Singh, A.K.4
-
5
-
-
84916885405
-
Phosphorene oxide: stability and electronic properties of a novel two-dimensional material
-
Wang G, Pandey R, Karna SP. Phosphorene oxide: stability and electronic properties of a novel two-dimensional material. Nanoscale. 2015; 7:524–31.
-
(2015)
Nanoscale
, vol.7
, pp. 524-531
-
-
Wang, G.1
Pandey, R.2
Karna, S.P.3
-
6
-
-
84904616293
-
High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus
-
Qiao J, Kong X, Hu ZX, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun. 2014; 5:4475.
-
(2014)
Nat Commun
, vol.5
, pp. 4475
-
-
Qiao, J.1
Kong, X.2
Hu, Z.X.3
Yang, F.4
Ji, W.5
-
7
-
-
84930663910
-
Chemical scissors cut phosphorene nanostructures
-
Peng X, Wei Q. Chemical scissors cut phosphorene nanostructures. Mater Res Express. 2014; 1:045041.
-
(2014)
Mater Res Express
, vol.45041
, pp. 1
-
-
Peng, X.1
Wei, Q.2
-
8
-
-
84906093410
-
Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers
-
Guo H, Lu N, Dai J, Wu X, Zeng XC. Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J Phys Chem C. 2014; 118:14051–14059.
-
(2014)
J Phys Chem C
, vol.118
, pp. 14051-14059
-
-
Guo, H.1
Lu, N.2
Dai, J.3
Wu, X.4
Zeng, X.C.5
-
9
-
-
84907466626
-
Electronic properties of edge-hydrogenated phosphorene nanoribbons: a first-principles study
-
Li W, Zhang G, Zhang YW. Electronic properties of edge-hydrogenated phosphorene nanoribbons: a first-principles study. J Phys Chem C. 2014; 118:22368–2372.
-
(2014)
J Phys Chem C
, vol.118
, pp. 22368-22372
-
-
Li, W.1
Zhang, G.2
Zhang, Y.W.3
-
10
-
-
84907978491
-
Edge effects on the electronic properties of phosphorene nanoribbons
-
Peng X, Copple A, Wei Q. Edge effects on the electronic properties of phosphorene nanoribbons. J Appl Phys. 2014; 116:144301.
-
(2014)
J Appl Phys
, pp. 116
-
-
Peng, X.1
Copple, A.2
Wei, Q.3
-
11
-
-
84920699855
-
Phosphorene nanoribbons: passivation effect on bandgap and effective mass
-
Xu LC, Song XJ, Yang Z, Cao L, Liu RP, Li XY. Phosphorene nanoribbons: passivation effect on bandgap and effective mass. Appl Surf Sci. 2015; 324:640–4.
-
(2015)
Appl Surf Sci
, vol.324
, pp. 640-644
-
-
Xu, L.C.1
Song, X.J.2
Yang, Z.3
Cao, L.4
Liu, R.P.5
Li, X.Y.6
-
12
-
-
84858231682
-
Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons
-
Qi J, Qian X, Qi L, Feng J, Shi D, Li J. Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons. Nano Lett. 2012; 12:1224–1228.
-
(2012)
Nano Lett
, vol.12
, pp. 1224-1228
-
-
Qi, J.1
Qian, X.2
Qi, L.3
Feng, J.4
Shi, D.5
Li, J.6
-
13
-
-
84920653657
-
Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons
-
Ramasubramaniam A, Muniz AR. Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons. Phys Rev B. 2014; 90:085424.
-
(2014)
Phys Rev B
, vol.85424
, pp. 90
-
-
Ramasubramaniam, A.1
Muniz, A.R.2
-
14
-
-
84902764385
-
Scaling laws for the band gap and optical response of phosphorene nanoribbons
-
Tran V, Yang L. Scaling laws for the band gap and optical response of phosphorene nanoribbons. Phys Rev B. 2014; 89:245407.
-
(2014)
Phys Rev B
, pp. 89
-
-
Tran, V.1
Yang, L.2
-
16
-
-
84914694872
-
Fan DD, Phosphorene nanoribbon as a promising candidate for thermoelectric applications
-
Zhang J, Liu HJ, Cheng L, Wei J, Liang JH, Fan DD, et al.Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci Rep. 2014; 4:6452.
-
(2014)
Sci Rep
, vol.4
, pp. 6452
-
-
Zhang, J.1
Liu, H.J.2
Cheng, L.3
Wei, J.4
Liang, J.H.5
-
17
-
-
84923379311
-
Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions
-
Zhang S, Yan Z, Li Y, Chen Z, Zeng H. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angew Chem Int Ed. 2015; 54:3112.
-
Angew Chem Int Ed. 2015
, vol.54
, pp. 3112
-
-
Zhang, S.1
Yan, Z.2
Li, Y.3
Chen, Z.4
Zeng, H.5
-
18
-
-
84923668533
-
Two-dimensional buckled and puckered honeycomb arsenic systems
-
Kamal C, Ezawa M. Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B. 2015; 91:085423.
-
(2015)
Phys Rev B
, vol.85423
, pp. 91
-
-
Kamal, C.1
Arsenene, E.M.2
-
19
-
-
84929190364
-
Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: a computational study
-
Zhu Z, Guan J, Tomanek D. Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: a computational study. Phys Rev B. 2015; 91:161404.
-
(1404)
Phys Rev B
, vol.91
, Issue.16
, pp. 2015
-
-
Zhu, Z.1
Guan, J.2
Tomanek, D.3
-
20
-
-
84930204810
-
Unexpected buckled structures and tunable electronic properties in arsenic nanosheets: insights from first-principles calculations
-
Wang Y, Ding Y. Unexpected buckled structures and tunable electronic properties in arsenic nanosheets: insights from first-principles calculations. J Phys: Condens Matter. 2015; 27:225304.
-
(2015)
J Phys: Condens Matter
, pp. 27
-
-
Wang, Y.1
Ding, Y.2
-
21
-
-
84929467768
-
Manifestation of unexpected semiconducting properties in few-layer orthorhombic arsenene
-
Zhang Z, Xie J, Yang D, Wang Y, Si M, Xue D. Manifestation of unexpected semiconducting properties in few-layer orthorhombic arsenene. Appl Phys Express. 2015; 8:055201.
-
(2015)
Appl Phys Express
, vol.55201
, pp. 8
-
-
Zhang, Z.1
Xie, J.2
Yang, D.3
Wang, Y.4
Si, M.5
Xue, D.6
-
22
-
-
2442537377
-
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
-
Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996; 54:11169–86.
-
(1996)
Phys Rev B
, vol.54
, pp. 11169-11186
-
-
Kresse, G.1
Furthmuller, J.2
-
23
-
-
70149102016
-
Ab initio molecular simulations with numeric atom-centered orbitals
-
Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, et al.Ab initio molecular simulations with numeric atom-centered orbitals. Comput Phys Commun. 2009; 180:2175–196.
-
(2009)
Comput Phys Commun.
, vol.180
, pp. 2175-2196
-
-
Blum, V.1
Gehrke, R.2
Hanke, F.3
Havu, P.4
Havu, V.5
Ren, X.6
-
24
-
-
84899739990
-
Semiconducting layered blue phosphorus: a computational study
-
Zhu Z, Tománek D. Semiconducting layered blue phosphorus: a computational study. Phys Rev Lett. 2014; 112:176802.
-
(2014)
Phys Rev Lett
, pp. 112
-
-
Zhu, Z.1
Tománek, D.2
-
25
-
-
84863297317
-
Electronic structures of silicene fluoride and hydride
-
Ding Y, Wang Y. Electronic structures of silicene fluoride and hydride. Appl Phys Lett. 2012; 100:083102.
-
(2012)
Appl Phys Lett
, vol.83102
, pp. 100
-
-
Ding, Y.1
Wang, Y.2
-
26
-
-
84922953665
-
Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene
-
Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M. Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small. 2015; 11:640–52.
-
(2015)
Small
, vol.11
, pp. 640-652
-
-
Balendhran, S.1
Walia, S.2
Nili, H.3
Sriram, S.4
Bhaskaran, M.5
-
27
-
-
84884864834
-
Briddon PR, Stable hydrogenated graphene edge types: normal and reconstructed Klein edges
-
Wagner P, Ivanovskaya VV, Melle-Franco M, Humbert B, Adjizian JJ, Briddon PR, et al.Stable hydrogenated graphene edge types: normal and reconstructed Klein edges. Phys Rev B. 2013; 88:094106.
-
(2013)
Phys Rev B
, vol.94106
, pp. 88
-
-
Wagner, P.1
Ivanovskaya, V.V.2
Melle-Franco, M.3
Humbert, B.4
Adjizian, J.J.5
-
28
-
-
84906545207
-
A theoretical study of blue phosphorene nanoribbons based on first-principles calculations
-
Xie J, Si MS, Yang DZ, Zhang ZY, Xue DS. A theoretical study of blue phosphorene nanoribbons based on first-principles calculations. J Appl Phys. 2014; 116:073704.
-
(2014)
J Appl Phys
, vol.73704
, pp. 116
-
-
Xie, J.1
Si, M.S.2
Yang, D.Z.3
Zhang, Z.Y.4
Xue, D.S.5
-
29
-
-
0141990977
-
Charge carrier mobility in quasi-one-dimensional systems: application to a guanine stack
-
Beleznay FB, Bogar F, Ladik J. Charge carrier mobility in quasi-one-dimensional systems: application to a guanine stack. J Chem Phys. 2003; 119:5690–695.
-
(2003)
J Chem Phys
, vol.119
, pp. 5690-5695
-
-
Beleznay, F.B.1
Bogar, F.2
Ladik, J.3
|