메뉴 건너뛰기




Volumn 84, Issue , 2015, Pages 227-263

Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics

Author keywords

ADP ribosylation; ARTD; Chromatin; Histone; NAD; PAR; PARP

Indexed keywords

ADENOSINE DIPHOSPHATE; ADENOSINE DIPHOSPHATE RIBOSE; ADENOSINE DIPHOSPHATE RIBOSYLOME; DIPHTHERIA TOXIN; GLYCOSIDASE; HISTONE; HYDROLASE; NICOTINAMIDE ADENINE DINUCLEOTIDE; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE 1; POLY(ADENOSINE DIPHOSPHATE RIBOSE); POLY(ADENOSINE DIPHOSPHATE RIBOSE)GLYCOHYDROLASE; UNCLASSIFIED DRUG; ADP-RIBOSYLARGININE HYDROLASE; CHROMATIN; PROTEIN;

EID: 84930687902     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060614-034506     Document Type: Review
Times cited : (180)

References (279)
  • 1
    • 84917694641 scopus 로고    scopus 로고
    • Sequence divergence and diversity suggests ongoing functional diversification of vertebrate NAD metabolism
    • Gossmann TI, Ziegler M. 2014. Sequence divergence and diversity suggests ongoing functional diversification of vertebrate NAD metabolism. DNA Repair 23:29-48
    • (2014) DNA Repair , vol.23 , pp. 29-48
    • Gossmann, T.I.1    Ziegler, M.2
  • 5
    • 0002160618 scopus 로고
    • Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme
    • Chambon P, Weill J, Mandel P. 1963. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem. Biophys. Res. Commun. 11:39-43
    • (1963) Biochem. Biophys. Res. Commun. , vol.11 , pp. 39-43
    • Chambon, P.1    Weill, J.2    Mandel, P.3
  • 6
    • 0033598713 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion
    • Ha HC, Snyder SH. 1999. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. PNAS 96:13978-82
    • (1999) PNAS , vol.96 , pp. 13978-13982
    • Ha, H.C.1    Snyder, S.H.2
  • 7
    • 84904300961 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis
    • Andrabi SA, Umanah GK, Chang C, Stevens DA, Karuppagounder SS, et al. 2014. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. PNAS 111:10209-14
    • (2014) PNAS , vol.111 , pp. 10209-10214
    • Andrabi, S.A.1    Umanah, G.K.2    Chang, C.3    Stevens, D.A.4    Karuppagounder, S.S.5
  • 8
    • 0029162298 scopus 로고
    • Dissection of ADP-ribose polymer synthesis into individual steps of initiation, elongation, and branching
    • Alvarez-Gonzalez R, Mendoza-Alvarez H. 1995. Dissection of ADP-ribose polymer synthesis into individual steps of initiation, elongation, and branching. Biochimie 77:403-7
    • (1995) Biochimie , vol.77 , pp. 403-407
    • Alvarez-Gonzalez, R.1    Mendoza-Alvarez, H.2
  • 9
    • 0019575258 scopus 로고
    • Protein-bound polymeric andmonomeric ADPribose residues in hepatic tissues. Comparative analyses using a new procedure for the quantification of poly(ADP-ribose)
    • Wielckens K, Bredehorst R, Adamietz P, Hilz H. 1981. Protein-bound polymeric andmonomeric ADPribose residues in hepatic tissues. Comparative analyses using a new procedure for the quantification of poly(ADP-ribose). Eur. J. Biochem. 117:69-74
    • (1981) Eur. J. Biochem. , vol.117 , pp. 69-74
    • Wielckens, K.1    Bredehorst, R.2    Adamietz, P.3    Hilz, H.4
  • 10
    • 0020479802 scopus 로고
    • DNA fragmentation and NAD depletion. Their relation to the turnover of endogenous mono(ADP-ribosyl) and poly(ADP-ribosyl) proteins
    • Wielckens K, Schmidt A, George E, Bredehorst R, Hilz H. 1982. DNA fragmentation and NAD depletion. Their relation to the turnover of endogenous mono(ADP-ribosyl) and poly(ADP-ribosyl) proteins. J. Biol. Chem. 257:12872-77
    • (1982) J. Biol. Chem. , vol.257 , pp. 12872-12877
    • Wielckens, K.1    Schmidt, A.2    George, E.3    Bredehorst, R.4    Hilz, H.5
  • 12
    • 0019644124 scopus 로고
    • ADP-ribosylation of proteins - A multifunctional process
    • Hilz H. 1981. ADP-ribosylation of proteins-a multifunctional process. Hoppe-Seyler's Z. Physiol. Chem. 362:1415-25
    • (1981) Hoppe-Seyler's Z. Physiol. Chem. , vol.362 , pp. 1415-1425
    • Hilz, H.1
  • 13
    • 84862758175 scopus 로고    scopus 로고
    • Newinsights into the molecular and cellular functions of poly(ADP-ribose) and PARPs
    • Gibson BA, Kraus WL. 2012. Newinsights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13:411-24
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 411-424
    • Gibson, B.A.1    Kraus, W.L.2
  • 14
    • 24744447821 scopus 로고    scopus 로고
    • The role of poly(ADP-ribose) in the DNA damage signaling network
    • Malanga M, Althaus FR. 2005. The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem. Cell Biol. 83:354-64
    • (2005) Biochem. Cell Biol. , vol.83 , pp. 354-364
    • Malanga, M.1    Althaus, F.R.2
  • 15
    • 10344234720 scopus 로고    scopus 로고
    • Poly(ADP-ribose) is required for spindle assembly and structure
    • Chang P, Jacobson MK, Mitchison TJ. 2004. Poly(ADP-ribose) is required for spindle assembly and structure. Nature 432:645-49
    • (2004) Nature , vol.432 , pp. 645-649
    • Chang, P.1    Jacobson, M.K.2    Mitchison, T.J.3
  • 16
    • 0037067317 scopus 로고    scopus 로고
    • Mediation of poly(ADP-ribose) polymerase 1-dependent cell death by apoptosis-inducing factor
    • Yu S-W, Wang H, Poitras M, Coombs C, Bowers W, et al. 2002. Mediation of poly(ADP-ribose) polymerase 1-dependent cell death by apoptosis-inducing factor. Science 297:259-63
    • (2002) Science , vol.297 , pp. 259-263
    • Yu, S.-W.1    Wang, H.2    Poitras, M.3    Coombs, C.4    Bowers, W.5
  • 17
    • 0025796808 scopus 로고
    • Enzymological properties of poly(ADPribose) polymerase: Characterization of automodification sites and NADase activity
    • Desmarais Y, Menard L, Lagueux J, Poirier GG. 1991. Enzymological properties of poly(ADPribose) polymerase: characterization of automodification sites and NADase activity. Biochim. Biophys. Acta 1078:179-86
    • (1991) Biochim. Biophys. Acta , vol.1078 , pp. 179-186
    • Desmarais, Y.1    Menard, L.2    Lagueux, J.3    Poirier, G.G.4
  • 19
    • 0021774471 scopus 로고
    • Monoclonal antibodies to poly(adenosine diphosphate ribose) recognize different structures
    • Kawamitsu H, Hoshino H, Okada H, Miwa M, Momoi H, Sugimura T. 1984. Monoclonal antibodies to poly(adenosine diphosphate ribose) recognize different structures. Biochemistry 23:3771-77
    • (1984) Biochemistry , vol.23 , pp. 3771-3777
    • Kawamitsu, H.1    Hoshino, H.2    Okada, H.3    Miwa, M.4    Momoi, H.5    Sugimura, T.6
  • 20
    • 84864003593 scopus 로고    scopus 로고
    • Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes
    • Martinez-Zamudio R, Ha HC. 2012. Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes. Mol. Cell. Biol. 32:2490-502
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 2490-2502
    • Martinez-Zamudio, R.1    Ha, H.C.2
  • 21
    • 84898015278 scopus 로고    scopus 로고
    • Engineering the substrate specificity of ADP-ribosyltransferases for identifying direct protein targets
    • Carter-O'Connell I, Jin H, Morgan RK, David LL, Cohen MS. 2014. Engineering the substrate specificity of ADP-ribosyltransferases for identifying direct protein targets. J. Am. Chem. Soc. 136:5201-4
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 5201-5204
    • Carter-O'connell, I.1    Jin, H.2    Morgan, R.K.3    David, L.L.4    Cohen, M.S.5
  • 22
    • 0017802365 scopus 로고
    • Purification of ADP-ribosylated nuclear proteins by covalent chromatography on dihydroxyboryl polyacrylamide beads and their characterization
    • Okayama H, Ueda K, Hayaishi O. 1978. Purification of ADP-ribosylated nuclear proteins by covalent chromatography on dihydroxyboryl polyacrylamide beads and their characterization. PNAS 75:1111-15
    • (1978) PNAS , vol.75 , pp. 1111-1115
    • Okayama, H.1    Ueda, K.2    Hayaishi, O.3
  • 24
    • 63149116496 scopus 로고    scopus 로고
    • Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome
    • Dani N, Stilla A, Marchegiani A, Tamburro A, Till S, et al. 2009. Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome. PNAS 106:4243-48
    • (2009) PNAS , vol.106 , pp. 4243-4248
    • Dani, N.1    Stilla, A.2    Marchegiani, A.3    Tamburro, A.4    Till, S.5
  • 25
    • 84905366697 scopus 로고    scopus 로고
    • Phosphoproteomic approach to characterize proteinmono- and poly(ADP-ribosyl)ation sites from cells
    • Daniels CM, Ong SE, Leung AK. 2014. Phosphoproteomic approach to characterize proteinmono- and poly(ADP-ribosyl)ation sites from cells. J. Proteome Res. 13:3510-22
    • (2014) J. Proteome Res. , vol.13 , pp. 3510-3522
    • Daniels, C.M.1    Ong, S.E.2    Leung, A.K.3
  • 26
    • 84886246082 scopus 로고    scopus 로고
    • Proteome-wide identification of poly(ADP-ribosyl)ation targets in different genotoxic stress responses
    • Jungmichel S, Rosenthal F, Altmeyer M, Lukas J, Hottiger MO, Nielsen ML. 2013. Proteome-wide identification of poly(ADP-ribosyl)ation targets in different genotoxic stress responses. Mol. Cell 52:272-85
    • (2013) Mol. Cell , vol.52 , pp. 272-285
    • Jungmichel, S.1    Rosenthal, F.2    Altmeyer, M.3    Lukas, J.4    Hottiger, M.O.5    Nielsen, M.L.6
  • 27
    • 84884906084 scopus 로고    scopus 로고
    • Site-specific characterization of the Asp- and Glu-ADPribosylated proteome
    • Zhang Y, Wang J, Ding M, Yu Y. 2013. Site-specific characterization of the Asp- and Glu-ADPribosylated proteome. Nat. Methods 10:981-84
    • (2013) Nat. Methods , vol.10 , pp. 981-984
    • Zhang, Y.1    Wang, J.2    Ding, M.3    Yu, Y.4
  • 28
    • 0018107954 scopus 로고
    • Two different types of bonds linking single ADP-ribose residues covalently to proteins. Quantification in eukaryotic cells
    • Bredehorst R, Wielckens K, Gartemann A, Lengyel H, Klapproth K, Hilz H. 1978. Two different types of bonds linking single ADP-ribose residues covalently to proteins. Quantification in eukaryotic cells. Eur. J. Biochem. 92:129-35
    • (1978) Eur. J. Biochem. , vol.92 , pp. 129-135
    • Bredehorst, R.1    Wielckens, K.2    Gartemann, A.3    Lengyel, H.4    Klapproth, K.5    Hilz, H.6
  • 29
    • 0016792818 scopus 로고
    • Chemical andmetabolic properties of adenosine diphosphate ribose derivatives of nuclear proteins
    • Smith JA, Stocken LA. 1975. Chemical andmetabolic properties of adenosine diphosphate ribose derivatives of nuclear proteins. Biochem. J. 147:523-29
    • (1975) Biochem. J. , vol.147 , pp. 523-529
    • Smith, J.A.1    Stocken, L.A.2
  • 30
    • 84904660397 scopus 로고    scopus 로고
    • Identification of ADP-ribosylated peptides and ADP-ribose acceptor sites
    • Rosenthal F, Hottiger MO. 2014. Identification of ADP-ribosylated peptides and ADP-ribose acceptor sites. Front. Biosci. (Landmark Ed.) 19:1041-56
    • (2014) Front. Biosci. (Landmark Ed.) , vol.19 , pp. 1041-1056
    • Rosenthal, F.1    Hottiger, M.O.2
  • 33
    • 14944349319 scopus 로고    scopus 로고
    • Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system
    • De Flora A, Zocchi E, Guida L, Franco L, Bruzzone S. 2004. Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Ann. N.Y. Acad. Sci. 1028:176-91
    • (2004) Ann. N.Y. Acad. Sci. , vol.1028 , pp. 176-191
    • De Flora, A.1    Zocchi, E.2    Guida, L.3    Franco, L.4    Bruzzone, S.5
  • 34
    • 1842430537 scopus 로고    scopus 로고
    • Ecto-ADP-ribosyltransferases (ARTs): Emerging actors in cell communication and signaling
    • Seman M, Adriouch S, Haag F, Koch-Nolte F. 2004. Ecto-ADP-ribosyltransferases (ARTs): emerging actors in cell communication and signaling. Curr. Med. Chem. 11:857-72
    • (2004) Curr. Med. Chem. , vol.11 , pp. 857-872
    • Seman, M.1    Adriouch, S.2    Haag, F.3    Koch-Nolte, F.4
  • 35
    • 84862196500 scopus 로고    scopus 로고
    • Poly(ADP-ribose) regulates post-transcriptional gene regulation in the cytoplasm
    • Leung A, Todorova T, Ando Y, Chang P. 2012. Poly(ADP-ribose) regulates post-transcriptional gene regulation in the cytoplasm. RNA Biol. 9:542-548
    • (2012) RNA Biol. , vol.9 , pp. 542-548
    • Leung, A.1    Todorova, T.2    Ando, Y.3    Chang, P.4
  • 36
    • 84882437564 scopus 로고    scopus 로고
    • A systematic analysis of the PARP protein family identifies new functions critical for cell physiology
    • Vyas S, Chesarone-Cataldo M, Todorova T, Huang YH, Chang P. 2013. A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nat. Commun. 4:2240
    • (2013) Nat. Commun. , vol.4 , pp. 2240
    • Vyas, S.1    Chesarone-Cataldo, M.2    Todorova, T.3    Huang, Y.H.4    Chang, P.5
  • 37
    • 2942539327 scopus 로고    scopus 로고
    • Vault poly(ADP-ribose) polymerase is associated with mammalian telomerase and is dispensable for telomerase function and vault structure in vivo
    • Liu Y, Snow BE, Kickhoefer VA, Erdmann N, Zhou W, et al. 2004. Vault poly(ADP-ribose) polymerase is associated with mammalian telomerase and is dispensable for telomerase function and vault structure in vivo. Mol. Cell. Biol. 24:5314-23
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 5314-5323
    • Liu, Y.1    Snow, B.E.2    Kickhoefer, V.A.3    Erdmann, N.4    Zhou, W.5
  • 38
    • 0032553473 scopus 로고    scopus 로고
    • Tankyrase, a poly(ADP-ribose) polymerase at human telomeres
    • Smith S, Giriat I, Schmitt A, de Lange T. 1998. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282:1484-87
    • (1998) Science , vol.282 , pp. 1484-1487
    • Smith, S.1    Giriat, I.2    Schmitt, A.3    De Lange, T.4
  • 39
    • 0034623934 scopus 로고    scopus 로고
    • Tankyrase is a Golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles
    • Chi NW, Lodish HF. 2000. Tankyrase is a Golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J. Biol. Chem. 275:38437-44
    • (2000) J. Biol. Chem. , vol.275 , pp. 38437-38444
    • Chi, N.W.1    Lodish, H.F.2
  • 40
    • 33744965941 scopus 로고    scopus 로고
    • CDK-dependent activation of poly(ADP-ribose) polymerasemember 10 (PARP10)
    • Chou H-Y, Chou H, Lee S-C. 2006. CDK-dependent activation of poly(ADP-ribose) polymerasemember 10 (PARP10). J. Biol. Chem. 281:15201-7
    • (2006) J. Biol. Chem. , vol.281 , pp. 15201-15207
    • Chou, H.-Y.1    Chou, H.2    Lee, S.-C.3
  • 41
    • 84886727115 scopus 로고    scopus 로고
    • Structural biology of the writers, readers, and erasers in mono- and poly(ADP-ribose) mediated signaling
    • Karlberg T, Langelier MF, Pascal JM, Schüler H. 2013. Structural biology of the writers, readers, and erasers in mono- and poly(ADP-ribose) mediated signaling. Mol. Aspects Med. 34:1088-108
    • (2013) Mol. Aspects Med. , vol.34 , pp. 1088-1108
    • Karlberg, T.1    Langelier, M.F.2    Pascal, J.M.3    Schüler, H.4
  • 42
    • 33749260519 scopus 로고    scopus 로고
    • Nuclear ADP-ribosylation reactions in mammalian cells:Where are we today and where are we going?
    • Hassa PO, Haenni S, Elser M, Hottiger MO. 2006. Nuclear ADP-ribosylation reactions in mammalian cells:Where are we today and where are we going? Microbiol. Mol. Biol. Rev. 70:789-829
    • (2006) Microbiol. Mol. Biol. Rev. , vol.70 , pp. 789-829
    • Hassa, P.O.1    Haenni, S.2    Elser, M.3    Hottiger, M.O.4
  • 43
    • 84902322535 scopus 로고    scopus 로고
    • Poly(ADP-ribose): An organizer of cellular architecture
    • Leung AK. 2014. Poly(ADP-ribose): an organizer of cellular architecture. J. Cell Biol. 205:613-19
    • (2014) J. Cell Biol. , vol.205 , pp. 613-619
    • Leung, A.K.1
  • 44
    • 84904697375 scopus 로고    scopus 로고
    • Family-wide analysis of poly(ADP-ribose) polymerase activity
    • Vyas S, Matic I, Uchima L, Rood J, Zəja R, et al. 2014. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat. Commun. 5:4426
    • (2014) Nat. Commun. , vol.5 , pp. 4426
    • Vyas, S.1    Matic, I.2    Uchima, L.3    Rood, J.4    Zəja, R.5
  • 45
    • 0032515152 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers
    • Shieh W, Amé J, Wilson M, Wang Z, Koh D, et al. 1998. Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J. Biol. Chem. 273:30069-72
    • (1998) J. Biol. Chem. , vol.273 , pp. 30069-30072
    • Shieh, W.1    Amé, J.2    Wilson, M.3    Wang, Z.4    Koh, D.5
  • 46
    • 0033580856 scopus 로고    scopus 로고
    • PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase
    • Amé JC, Rolli V, Schreiber V, Niedergang C, Apiou F, et al. 1999. PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem. 274:17860-68
    • (1999) J. Biol. Chem. , vol.274 , pp. 17860-17868
    • Amé, J.C.1    Rolli, V.2    Schreiber, V.3    Niedergang, C.4    Apiou, F.5
  • 47
    • 0036132673 scopus 로고    scopus 로고
    • Role for the related poly(ADP-ribose) polymerases tankyrase 1 and 2 at human telomeres
    • Cook BD, Dynek JN, Chang W, Shostak G, Smith S. 2002. Role for the related poly(ADP-ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol. Cell. Biol. 22:332-42
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 332-342
    • Cook, B.D.1    Dynek, J.N.2    Chang, W.3    Shostak, G.4    Smith, S.5
  • 48
    • 84903977632 scopus 로고    scopus 로고
    • PARP-2 and PARP-3 are selectively activated by 5′ phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1
    • Langelier MF, Riccio AA, Pascal JM. 2014. PARP-2 and PARP-3 are selectively activated by 5′ phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1. Nucleic Acids Res. 42:7762-75
    • (2014) Nucleic Acids Res. , vol.42 , pp. 7762-7775
    • Langelier, M.F.1    Riccio, A.A.2    Pascal, J.M.3
  • 49
    • 84886723521 scopus 로고    scopus 로고
    • Poly(ADP-ribose): PARadigms and PARadoxes
    • Bürkle A, Virág L. 2013. Poly(ADP-ribose): PARadigms and PARadoxes. Mol. Aspects Med. 34:1046-65
    • (2013) Mol. Aspects Med. , vol.34 , pp. 1046-1065
    • Bürkle, A.1    Virág, L.2
  • 51
    • 53149094334 scopus 로고    scopus 로고
    • Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation
    • Kleine H, Poreba E, Lesniewicz K, Hassa PO, Hottiger MO, et al. 2008. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol. Cell 32:57-69
    • (2008) Mol. Cell , vol.32 , pp. 57-69
    • Kleine, H.1    Poreba, E.2    Lesniewicz, K.3    Hassa, P.O.4    Hottiger, M.O.5
  • 52
    • 0019876860 scopus 로고
    • Poly(ADP-ribose) synthetase, a main acceptor of poly(ADP-ribose) in isolated nuclei
    • Ogata N, Ueda K, Kawaichi M, Hayaishi O. 1981. Poly(ADP-ribose) synthetase, a main acceptor of poly(ADP-ribose) in isolated nuclei. J. Biol. Chem. 256:4135-37
    • (1981) J. Biol. Chem. , vol.256 , pp. 4135-4137
    • Ogata, N.1    Ueda, K.2    Kawaichi, M.3    Hayaishi, O.4
  • 54
    • 67649888368 scopus 로고    scopus 로고
    • Molecular mechanism of poly(ADPribosyl) ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites
    • Altmeyer M, Messner S, Hassa PO, Fey M, Hottiger MO. 2009. Molecular mechanism of poly(ADPribosyl) ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res. 37:3723-38
    • (2009) Nucleic Acids Res. , vol.37 , pp. 3723-3738
    • Altmeyer, M.1    Messner, S.2    Hassa, P.O.3    Fey, M.4    Hottiger, M.O.5
  • 55
    • 58749112769 scopus 로고    scopus 로고
    • Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes
    • Gagné J-P, Isabelle M, Lo K, Bourassa S, Hendzel M, et al. 2008. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res. 36:6959-76
    • (2008) Nucleic Acids Res. , vol.36 , pp. 6959-6976
    • Gagné, J.-P.1    Isabelle, M.2    Lo, K.3    Bourassa, S.4    Hendzel, M.5
  • 56
    • 84886719040 scopus 로고    scopus 로고
    • PARP-1 and gene regulation: Progress and puzzles
    • Kraus WL, Hottiger MO. 2013. PARP-1 and gene regulation: progress and puzzles. Mol. Aspects Med. 34:1109-23
    • (2013) Mol. Aspects Med. , vol.34 , pp. 1109-1123
    • Kraus, W.L.1    Hottiger, M.O.2
  • 58
    • 0018906390 scopus 로고
    • ADP-ribose)n participates in DNA excision repair
    • Durkacz BW, Omidiji O, Gray DA, Shall S. 1980. (ADP-ribose)n participates in DNA excision repair. Nature 283:593-96
    • (1980) Nature , vol.283 , pp. 593-596
    • Durkacz, B.W.1    Omidiji, O.2    Gray, D.A.3    Shall, S.4
  • 61
  • 62
    • 84870855799 scopus 로고    scopus 로고
    • Tankyrase-targeted therapeutics: Expanding opportunities in the PARP family
    • Riffell JL, Lord CJ, Ashworth A. 2012. Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat. Rev. Drug Discov. 11:923-36
    • (2012) Nat. Rev. Drug Discov , vol.11 , pp. 923-936
    • Riffell, J.L.1    Lord, C.J.2    Ashworth, A.3
  • 63
    • 84857939963 scopus 로고    scopus 로고
    • Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors
    • Wahlberg E, Karlberg T, Kouznetsova E, Markova N, Macchiarulo A, et al. 2012. Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat. Biotechnol. 30:283-88
    • (2012) Nat. BioTechnol. , vol.30 , pp. 283-288
    • Wahlberg, E.1    Karlberg, T.2    Kouznetsova, E.3    Markova, N.4    Macchiarulo, A.5
  • 64
    • 17244375049 scopus 로고    scopus 로고
    • Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase
    • Bryant H, Schultz N, Thomas H, Parker K, Flower D, et al. 2005. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913-17
    • (2005) Nature , vol.434 , pp. 913-917
    • Bryant, H.1    Schultz, N.2    Thomas, H.3    Parker, K.4    Flower, D.5
  • 65
    • 17244373777 scopus 로고    scopus 로고
    • Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy
    • Farmer H, McCabe N, Lord C, Tutt A, Johnson D, et al. 2005. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917-21
    • (2005) Nature , vol.434 , pp. 917-921
    • Farmer, H.1    McCabe, N.2    Lord, C.3    Tutt, A.4    Johnson, D.5
  • 66
    • 35748970514 scopus 로고    scopus 로고
    • PARP inhibitor development for systemic cancer targeting
    • Zaremba T, Curtin NJ. 2007. PARP inhibitor development for systemic cancer targeting. Anticancer Agents Med. Chem. 7:515-23
    • (2007) Anticancer Agents Med. Chem. , vol.7 , pp. 515-523
    • Zaremba, T.1    Curtin, N.J.2
  • 67
    • 84887431012 scopus 로고    scopus 로고
    • Mechanisms of resistance to therapies targeting BRCA-mutant cancers
    • Lord CJ, Ashworth A. 2013. Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat. Med. 19:1381-88
    • (2013) Nat. Med. , vol.19 , pp. 1381-1388
    • Lord, C.J.1    Ashworth, A.2
  • 69
    • 85016372152 scopus 로고    scopus 로고
    • Molecular insights into poly(ADP-ribose) recognition and processing
    • Zəja R, Mikoč A, Barkauskaite E, Ahel I. 2012. Molecular insights into poly(ADP-ribose) recognition and processing. Biomolecules 3:1-17
    • (2012) Biomolecules , vol.3 , pp. 1-17
    • Zəja, R.1    Mikoč, A.2    Barkauskaite, E.3    Ahel, I.4
  • 70
  • 72
    • 0026506694 scopus 로고
    • Noncovalent interactions of poly(adenosine diphosphate ribose) with histones
    • Panzeter PL, Realini CA, Althaus FR. 1992. Noncovalent interactions of poly(adenosine diphosphate ribose) with histones. Biochemistry 31:1379-85
    • (1992) Biochemistry , vol.31 , pp. 1379-1385
    • Panzeter, P.L.1    Realini, C.A.2    Althaus, F.R.3
  • 73
    • 0034731455 scopus 로고    scopus 로고
    • Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins
    • Pleschke J, Kleczkowska H, Strohm M, Althaus F. 2000. Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J. Biol. Chem. 275:40974-80
    • (2000) J. Biol. Chem. , vol.275 , pp. 40974-40980
    • Pleschke, J.1    Kleczkowska, H.2    Strohm, M.3    Althaus, F.4
  • 74
    • 79953840957 scopus 로고    scopus 로고
    • Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase 1-dependent cell death (parthanatos)
    • Wang Y, Kim NS, Haince JF, Kang HC, David KK, et al. 2011. Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase 1-dependent cell death (parthanatos). Sci. Signal 4:ra20
    • (2011) Sci. Signal , vol.4 , pp. ra20
    • Wang, Y.1    Kim, N.S.2    Haince, J.F.3    Kang, H.C.4    David, K.K.5
  • 75
    • 38049064044 scopus 로고    scopus 로고
    • Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins
    • Ahel I, Ahel D, Matsusaka T, Clark AJ, Pines J, et al. 2008. Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature 451:81-85
    • (2008) Nature , vol.451 , pp. 81-85
    • Ahel, I.1    Ahel, D.2    Matsusaka, T.3    Clark, A.J.4    Pines, J.5
  • 76
    • 76349105464 scopus 로고    scopus 로고
    • Solution structures of the two PBZ domains from human APLF and their interaction with poly(ADP-ribose)
    • Eustermann S, Brockmann C, Mehrotra P, Yang J-C, Loakes D, et al. 2010. Solution structures of the two PBZ domains from human APLF and their interaction with poly(ADP-ribose). Nat. Struct. Mol. Biol. 17:241-43
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 241-243
    • Eustermann, S.1    Brockmann, C.2    Mehrotra, P.3    Yang, J.-C.4    Loakes, D.5
  • 77
    • 78649874455 scopus 로고    scopus 로고
    • Structural basis of poly(ADPribose) recognition by the multizinc binding domain of checkpoint with forkhead-associated and RING domains (CHFR)
    • Oberoi J, Richards MW, Crumpler S, Brown N, Blagg J, Bayliss R. 2010. Structural basis of poly(ADPribose) recognition by the multizinc binding domain of checkpoint with forkhead-associated and RING domains (CHFR). J. Biol. Chem. 285:39348-58
    • (2010) J. Biol. Chem. , vol.285 , pp. 39348-39358
    • Oberoi, J.1    Richards, M.W.2    Crumpler, S.3    Brown, N.4    Blagg, J.5    Bayliss, R.6
  • 78
    • 77952716489 scopus 로고    scopus 로고
    • Structure and identification of ADP-ribose recognition motifs of APLF and role in the DNA damage response
    • Li GY, McCulloch RD, Fenton AL, Cheung M, Meng L, et al. 2010. Structure and identification of ADP-ribose recognition motifs of APLF and role in the DNA damage response. PNAS 107:9129-34
    • (2010) PNAS , vol.107 , pp. 9129-9134
    • Li, G.Y.1    McCulloch, R.D.2    Fenton, A.L.3    Cheung, M.4    Meng, L.5
  • 79
    • 0035338814 scopus 로고    scopus 로고
    • TheWWEdomain: A common interaction module in protein ubiquitination and ADP ribosylation
    • Aravind L. 2001. TheWWEdomain: a common interaction module in protein ubiquitination and ADP ribosylation. Trends Biochem. Sci. 26:273-75
    • (2001) Trends Biochem. Sci. , vol.26 , pp. 273-275
    • Aravind, L.1
  • 80
    • 84863010981 scopus 로고    scopus 로고
    • Recognition of the iso-ADP-ribosemoiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ationdependent ubiquitination
    • Wang Z, Michaud GA, Cheng Z, Zhang Y, Hinds TR, et al. 2012. Recognition of the iso-ADP-ribosemoiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ationdependent ubiquitination. Genes Dev. 26:235-40
    • (2012) Genes Dev. , vol.26 , pp. 235-240
    • Wang, Z.1    Michaud, G.A.2    Cheng, Z.3    Zhang, Y.4    Hinds, T.R.5
  • 81
    • 84868157532 scopus 로고    scopus 로고
    • Structural insight into the interaction of ADP-ribose with the PARP WWE domains
    • He F, Tsuda K, Takahashi M, Kuwasako K, Terada T, et al. 2012. Structural insight into the interaction of ADP-ribose with the PARP WWE domains. FEBS Lett. 586:3858-64
    • (2012) FEBS Lett , vol.586 , pp. 3858-3864
    • He, F.1    Tsuda, K.2    Takahashi, M.3    Kuwasako, K.4    Terada, T.5
  • 82
    • 79955617241 scopus 로고    scopus 로고
    • RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling
    • Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, et al. 2011. RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat. Cell Biol. 13:623-29
    • (2011) Nat. Cell Biol. , vol.13 , pp. 623-629
    • Zhang, Y.1    Liu, S.2    Mickanin, C.3    Feng, Y.4    Charlat, O.5
  • 83
    • 0025739985 scopus 로고
    • Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses
    • Gorbalenya AE, Koonin EV, Lai MM. 1991. Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett. 288:201-5
    • (1991) FEBS Lett , vol.288 , pp. 201-205
    • Gorbalenya, A.E.1    Koonin, E.V.2    Lai, M.M.3
  • 84
    • 0026737922 scopus 로고
    • MacroH2A, a core histone containing a large nonhistone region
    • Pehrson J, Fried V. 1992. MacroH2A, a core histone containing a large nonhistone region. Science 257:1398-400
    • (1992) Science , vol.257 , pp. 1398-1400
    • Pehrson, J.1    Fried, V.2
  • 86
    • 79957465554 scopus 로고    scopus 로고
    • The macro domain protein family: Structure, functions, and their potential therapeutic implications
    • Han W, Li X, Fu X. 2011. The macro domain protein family: structure, functions, and their potential therapeutic implications. Mutat. Res. 727:86-103
    • (2011) Mutat. Res. , vol.727 , pp. 86-103
    • Han, W.1    Li, X.2    Fu, X.3
  • 87
    • 84879415959 scopus 로고    scopus 로고
    • Macrodomain-containing proteins: Regulating new intracellular functions of mono(ADP-ribosyl)ation
    • Feijs KL, Forst AH, Verheugd P, Lüscher B. 2013. Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Nat. Rev. Mol. Cell Biol. 14:443-51
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 443-451
    • Feijs, K.L.1    Forst, A.H.2    Verheugd, P.3    Lüscher, B.4
  • 88
    • 0038047136 scopus 로고    scopus 로고
    • The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A
    • Allen MD, Buckle AM, Cordell SC, Lowe J, Bycroft M. 2003. The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A. J. Mol. Biol. 330:503-11
    • (2003) J. Mol. Biol. , vol.330 , pp. 503-511
    • Allen, M.D.1    Buckle, A.M.2    Cordell, S.C.3    Lowe, J.4    Bycroft, M.5
  • 90
    • 0034672418 scopus 로고    scopus 로고
    • BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration
    • Aguiar RC, Yakushijin Y, Kharbanda S, Salgia R, Fletcher JA, Shipp MA. 2000. BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration. Blood 96:4328-34
    • (2000) Blood , vol.96 , pp. 4328-4334
    • Aguiar, R.C.1    Yakushijin, Y.2    Kharbanda, S.3    Salgia, R.4    Fletcher, J.A.5    Shipp, M.A.6
  • 91
    • 63849298103 scopus 로고    scopus 로고
    • PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells
    • Cho SH, Goenka S, Henttinen T, Gudapati P, Reinikainen A, et al. 2009. PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells. Blood 113:2416-25
    • (2009) Blood , vol.113 , pp. 2416-2425
    • Cho, S.H.1    Goenka, S.2    Henttinen, T.3    Gudapati, P.4    Reinikainen, A.5
  • 92
    • 78650816688 scopus 로고    scopus 로고
    • The histone variant macroH2A suppresses melanoma progression through regulation of CDK8
    • Kapoor A, Goldberg MS, Cumberland LK, Ratnakumar K, Segura MF, et al. 2010. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468:1105-9
    • (2010) Nature , vol.468 , pp. 1105-1109
    • Kapoor, A.1    Goldberg, M.S.2    Cumberland, L.K.3    Ratnakumar, K.4    Segura, M.F.5
  • 94
    • 0024428970 scopus 로고
    • Poly(ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents
    • Alvarez-Gonzalez R, Althaus FR. 1989. Poly(ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents. Mutat. Res. 218:67-74
    • (1989) Mutat. Res. , vol.218 , pp. 67-74
    • Alvarez-Gonzalez, R.1    Althaus, F.R.2
  • 95
    • 18544384491 scopus 로고    scopus 로고
    • Regulation of poly(ADP-ribose) metabolism by poly(ADP-ribose) glycohydrolase: Where and when?
    • Bonicalzi ME, Haince JF, Droit A, Poirier GG. 2005. Regulation of poly(ADP-ribose) metabolism by poly(ADP-ribose) glycohydrolase: Where and when? Cell Mol. Life Sci. 62:739-50
    • (2005) Cell Mol. Life Sci. , vol.62 , pp. 739-750
    • Bonicalzi, M.E.1    Haince, J.F.2    Droit, A.3    Poirier, G.G.4
  • 96
    • 84917680186 scopus 로고    scopus 로고
    • Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases
    • Mashimo M, Kato J, Moss J. 2014. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases. DNA Repair 23:88-94
    • (2014) DNA Repair , vol.23 , pp. 88-94
    • Mashimo, M.1    Kato, J.2    Moss, J.3
  • 97
    • 33644984966 scopus 로고    scopus 로고
    • Dynamic relocation of poly(ADPribose) glycohydrolase isoforms during radiation-inducedDNA damage
    • Haince JF, Ouellet ME, McDonald D, Hendzel MJ, Poirier GG. 2006. Dynamic relocation of poly(ADPribose) glycohydrolase isoforms during radiation-inducedDNA damage. Biochim. Biophys. Acta 1763:226-37
    • (2006) Biochim. Biophys. Acta , vol.1763 , pp. 226-237
    • Haince, J.F.1    Ouellet, M.E.2    McDonald, D.3    Hendzel, M.J.4    Poirier, G.G.5
  • 98
    • 0023020120 scopus 로고
    • Purification and characterization of poly(ADPribose) glycohydrolase. Different modes of action on large and small poly(ADP-ribose)
    • Hatakeyama K, Nemoto Y, Ueda K, Hayaishi O. 1986. Purification and characterization of poly(ADPribose) glycohydrolase. Different modes of action on large and small poly(ADP-ribose). J. Biol. Chem. 261:14902-11
    • (1986) J. Biol. Chem. , vol.261 , pp. 14902-14911
    • Hatakeyama, K.1    Nemoto, Y.2    Ueda, K.3    Hayaishi, O.4
  • 99
    • 80053375417 scopus 로고    scopus 로고
    • The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase
    • Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, et al. 2011. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477:616-20
    • (2011) Nature , vol.477 , pp. 616-620
    • Slade, D.1    Dunstan, M.S.2    Barkauskaite, E.3    Weston, R.4    Lafite, P.5
  • 100
    • 20544475918 scopus 로고    scopus 로고
    • Identification of three critical acidic residues of poly(ADP-ribose) glycohydrolase involved in catalysis: Determining thePARGcatalytic domain
    • Patel CN, Koh DW, Jacobson MK, Oliveira MA. 2005. Identification of three critical acidic residues of poly(ADP-ribose) glycohydrolase involved in catalysis: determining thePARGcatalytic domain. Biochem. J. 388:493-500
    • (2005) Biochem. J. , vol.388 , pp. 493-500
    • Patel, C.N.1    Koh, D.W.2    Jacobson, M.K.3    Oliveira, M.A.4
  • 101
    • 63849177643 scopus 로고    scopus 로고
    • Poly(ADP-ribose) glycohydrolase (PARG) and its therapeutic potential
    • Min W, Wang Z-Q. 2009. Poly(ADP-ribose) glycohydrolase (PARG) and its therapeutic potential. Front. Biosci. 14:1619-26
    • (2009) Front. Biosci , vol.14 , pp. 1619-1626
    • Min, W.1    Wang, Z.-Q.2
  • 102
    • 0028280995 scopus 로고
    • Endoglycosidic cleavage of branched polymers by poly(ADP-ribose) glycohydrolase
    • Braun SA, Panzeter PL, Collinge MA, Althaus FR. 1994. Endoglycosidic cleavage of branched polymers by poly(ADP-ribose) glycohydrolase. Eur. J. Biochem. 220:369-75
    • (1994) Eur. J. Biochem. , vol.220 , pp. 369-375
    • Braun, S.A.1    Panzeter, P.L.2    Collinge, M.A.3    Althaus, F.R.4
  • 103
    • 0027528960 scopus 로고
    • Preferential degradation of proteinbound (ADP-ribose)n by nuclear poly(ADP-ribose) glycohydrolase from human placenta
    • Uchida K, Suzuki H, Maruta H, Abe H, Aoki K, et al. 1993. Preferential degradation of proteinbound (ADP-ribose)n by nuclear poly(ADP-ribose) glycohydrolase from human placenta. J. Biol. Chem. 268:3194-200
    • (1993) J. Biol. Chem. , vol.268 , pp. 3194-3200
    • Uchida, K.1    Suzuki, H.2    Maruta, H.3    Abe, H.4    Aoki, K.5
  • 104
    • 0032916344 scopus 로고    scopus 로고
    • Molecular heterogeneity and regulation of poly(ADP-ribose) glycohydrolase
    • Amé JC, Jacobson EL, Jacobson MK. 1999. Molecular heterogeneity and regulation of poly(ADP-ribose) glycohydrolase. Mol. Cell Biochem. 193:75-81
    • (1999) Mol. Cell Biochem. , vol.193 , pp. 75-81
    • Amé, J.C.1    Jacobson, E.L.2    Jacobson, M.K.3
  • 105
    • 84879566553 scopus 로고    scopus 로고
    • Roles of poly(ADP-ribose) glycohydrolase in DNA damage and apoptosis
    • Feng X, Koh DW. 2013. Roles of poly(ADP-ribose) glycohydrolase in DNA damage and apoptosis. Int. Rev. Cell Mol. Biol. 304:227-81
    • (2013) Int. Rev. Cell Mol. Biol. , vol.304 , pp. 227-281
    • Feng, X.1    Koh, D.W.2
  • 106
    • 79952148357 scopus 로고    scopus 로고
    • The ups and downs of tannins as inhibitors of poly(ADPribose) glycohydrolase
    • Blenn C, Wyrsch P, Althaus FR. 2011. The ups and downs of tannins as inhibitors of poly(ADPribose) glycohydrolase. Molecules 16:1854-77
    • (2011) Molecules , vol.16 , pp. 1854-1877
    • Blenn, C.1    Wyrsch, P.2    Althaus, F.R.3
  • 107
    • 0028823239 scopus 로고
    • Mechanism of inhibition of poly(ADP-ribose) glycohydrolase by adenosine diphosphate (hydroxymethyl)pyrrolidinediol
    • Slama JT, Aboul-Ela N, Jacobson MK. 1995. Mechanism of inhibition of poly(ADP-ribose) glycohydrolase by adenosine diphosphate (hydroxymethyl)pyrrolidinediol. J. Med. Chem. 38:4332-36
    • (1995) J. Med. Chem. , vol.38 , pp. 4332-4336
    • Slama, J.T.1    Aboul-Ela, N.2    Jacobson, M.K.3
  • 108
    • 79961233161 scopus 로고    scopus 로고
    • Discovery and structure-activity relationships of modified salicylanilides as cell permeable inhibitors of poly(ADP-ribose) glycohydrolase (PARG)
    • Steffen JD, Coyle DL, Damodaran K, Beroza P, Jacobson MK. 2011. Discovery and structure-activity relationships of modified salicylanilides as cell permeable inhibitors of poly(ADP-ribose) glycohydrolase (PARG). J. Med. Chem. 54:5403-13
    • (2011) J. Med. Chem. , vol.54 , pp. 5403-5413
    • Steffen, J.D.1    Coyle, D.L.2    Damodaran, K.3    Beroza, P.4    Jacobson, M.K.5
  • 110
    • 84905908239 scopus 로고    scopus 로고
    • Design and synthesis of phenolic hydrazide hydrazones as potent poly(ADP-ribose) glycohydrolase (PARG) inhibitors
    • Islam R, Koizumi F, Kodera Y, Inoue K, Okawara T, MasutaniM. 2014. Design and synthesis of phenolic hydrazide hydrazones as potent poly(ADP-ribose) glycohydrolase (PARG) inhibitors. Bioorg.Med. Chem. Lett. 24:3802-6
    • (2014) Bioorg.Med. Chem. Lett , vol.24 , pp. 3802-3806
    • Islam, R.1    Koizumi, F.2    Kodera, Y.3    Inoue, K.4    Okawara, T.5    Masutani, M.6
  • 111
    • 84857945772 scopus 로고    scopus 로고
    • Inhibition of poly(ADP-ribose) glycohydrolase (PARG) specifically kills BRCA2-deficient tumor cells
    • Fathers C, Drayton RM, Solovieva S, Bryant HE. 2012. Inhibition of poly(ADP-ribose) glycohydrolase (PARG) specifically kills BRCA2-deficient tumor cells. Cell Cycle 11:990-97
    • (2012) Cell Cycle , vol.11 , pp. 990-997
    • Fathers, C.1    Drayton, R.M.2    Solovieva, S.3    Bryant, H.E.4
  • 112
    • 0026714597 scopus 로고
    • Molecular and immunological characterization of ADP-ribosylarginine hydrolases
    • Moss J, Stanley SJ, Nightingale MS, Murtagh JJ Jr, Monaco L, et al. 1992. Molecular and immunological characterization of ADP-ribosylarginine hydrolases. J. Biol. Chem. 267:10481-88
    • (1992) J. Biol. Chem. , vol.267 , pp. 10481-10488
    • Moss, J.1    Stanley, S.J.2    Nightingale, M.S.3    Murtagh, J.J.4    Monaco, L.5
  • 113
    • 84888110477 scopus 로고    scopus 로고
    • ADP-ribosyl-acceptor hydrolase 3 regulates poly(ADP-ribose) degradation and cell death during oxidative stress
    • Mashimo M, Kato J, Moss J. 2013. ADP-ribosyl-acceptor hydrolase 3 regulates poly(ADP-ribose) degradation and cell death during oxidative stress. PNAS 110:18964-69
    • (2013) PNAS , vol.110 , pp. 18964-18969
    • Mashimo, M.1    Kato, J.2    Moss, J.3
  • 114
    • 33750065699 scopus 로고    scopus 로고
    • The structure of human ADP-ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein ADP-ribosylation
    • Mueller-Dieckmann C, Kernstock S, Lisurek M, vonKries J, Haag F, et al. 2006. The structure of human ADP-ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein ADP-ribosylation. PNAS 103:15026-31
    • (2006) PNAS , vol.103 , pp. 15026-15031
    • Mueller-Dieckmann, C.1    Kernstock, S.2    Lisurek, M.3    Vonkries, J.4    Haag, F.5
  • 115
    • 33644849513 scopus 로고    scopus 로고
    • Identification and characterization of a mammalian 39-kDa poly(ADPribose) glycohydrolase
    • Oka S, Kato J, Moss J. 2006. Identification and characterization of a mammalian 39-kDa poly(ADPribose) glycohydrolase. J. Biol. Chem. 281:705-13
    • (2006) J. Biol. Chem. , vol.281 , pp. 705-713
    • Oka, S.1    Kato, J.2    Moss, J.3
  • 116
    • 33750940806 scopus 로고    scopus 로고
    • The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases
    • Ono T, Kasamatsu A, Oka S, Moss J. 2006. The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases. PNAS 103:16687-91
    • (2006) PNAS , vol.103 , pp. 16687-16691
    • Ono, T.1    Kasamatsu, A.2    Oka, S.3    Moss, J.4
  • 117
    • 84860844237 scopus 로고    scopus 로고
    • ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose)
    • Niere M, Mashimo M, Agledal L, Dolle C, Kasamatsu A, et al. 2012. ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose). J. Biol. Chem. 287:16088-102
    • (2012) J. Biol. Chem. , vol.287 , pp. 16088-16102
    • Niere, M.1    Mashimo, M.2    Agledal, L.3    Dolle, C.4    Kasamatsu, A.5
  • 118
    • 79958764081 scopus 로고    scopus 로고
    • Hydrolysis of O-acetyl-ADPribose isomers by ADP-ribosylhydrolase 3
    • Kasamatsu A, Nakao M, Smith BC, Comstock LR, Ono T, et al. 2011. Hydrolysis of O-acetyl-ADPribose isomers by ADP-ribosylhydrolase 3. J. Biol. Chem. 286:21110-17
    • (2011) J. Biol. Chem. , vol.286 , pp. 21110-21117
    • Kasamatsu, A.1    Nakao, M.2    Smith, B.C.3    Comstock, L.R.4    Ono, T.5
  • 119
    • 84877634923 scopus 로고    scopus 로고
    • Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease
    • Sharifi R, Morra R, Appel CD, Tallis M, Chioza B, et al. 2013. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J. 32:1225-37
    • (2013) EMBO J. , vol.32 , pp. 1225-1237
    • Sharifi, R.1    Morra, R.2    Appel, C.D.3    Tallis, M.4    Chioza, B.5
  • 120
    • 57749190795 scopus 로고    scopus 로고
    • Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites
    • Neuvonen M, Ahola T. 2009. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites. J. Mol. Biol. 385:212-25
    • (2009) J. Mol. Biol. , vol.385 , pp. 212-225
    • Neuvonen, M.1    Ahola, T.2
  • 121
    • 79953890881 scopus 로고    scopus 로고
    • Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases
    • Chen D, Vollmar M, Rossi MN, Phillips C, Kraehenbuehl R, et al. 2011. Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases. J. Biol. Chem. 286:13261-71
    • (2011) J. Biol. Chem. , vol.286 , pp. 13261-13271
    • Chen, D.1    Vollmar, M.2    Rossi, M.N.3    Phillips, C.4    Kraehenbuehl, R.5
  • 124
    • 65549148622 scopus 로고    scopus 로고
    • The single-macrodomain protein LRP16 is an essential cofactor of androgen receptor
    • Yang J, Zhao YL, Wu ZQ, Si YL, Meng YG, et al. 2009. The single-macrodomain protein LRP16 is an essential cofactor of androgen receptor. Endocr. Relat. Cancer 16:139-53
    • (2009) Endocr. Relat. Cancer , vol.16 , pp. 139-153
    • Yang, J.1    Zhao, Y.L.2    Wu, Z.Q.3    Si, Y.L.4    Meng, Y.G.5
  • 125
    • 0033926403 scopus 로고    scopus 로고
    • Review: Chromatin structural features and targets that regulate transcription
    • Wolffe AP, Guschin D. 2000. Review: Chromatin structural features and targets that regulate transcription. J. Struct. Biol. 129:102-22
    • (2000) J. Struct. Biol. , vol.129 , pp. 102-122
    • Wolffe, A.P.1    Guschin, D.2
  • 126
    • 84879260661 scopus 로고    scopus 로고
    • A double take on bivalent promoters
    • Voigt P, Tee WW, Reinberg D. 2013. A double take on bivalent promoters. Genes Dev. 27:1318-38
    • (2013) Genes Dev. , vol.27 , pp. 1318-1338
    • Voigt, P.1    Tee, W.W.2    Reinberg, D.3
  • 127
    • 36148986455 scopus 로고    scopus 로고
    • Nucleosomal core histones mediate dynamic regulation of poly(ADP-ribose) polymerase 1 protein binding to chromatin and induction of its enzymatic activity
    • Pinnola A, Naumova N, Shah M, Tulin A. 2007. Nucleosomal core histones mediate dynamic regulation of poly(ADP-ribose) polymerase 1 protein binding to chromatin and induction of its enzymatic activity. J. Biol. Chem. 282:32511-19
    • (2007) J. Biol. Chem. , vol.282 , pp. 32511-32519
    • Pinnola, A.1    Naumova, N.2    Shah, M.3    Tulin, A.4
  • 128
    • 84866534208 scopus 로고    scopus 로고
    • Alternative modes of binding of poly(ADPribose) polymerase 1 to free DNA and nucleosomes
    • Clark NJ, Kramer M, Muthurajan UM, Luger K. 2012. Alternative modes of binding of poly(ADPribose) polymerase 1 to free DNA and nucleosomes. J. Biol. Chem. 287:32430-39
    • (2012) J. Biol. Chem. , vol.287 , pp. 32430-32439
    • Clark, N.J.1    Kramer, M.2    Muthurajan, U.M.3    Luger, K.4
  • 129
    • 38949198773 scopus 로고    scopus 로고
    • Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes
    • Krishnakumar R, Gamble M, Frizzell K, Berrocal J, Kininis M, Kraus W. 2008. Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 319:819-21
    • (2008) Science , vol.319 , pp. 819-821
    • Krishnakumar, R.1    Gamble, M.2    Frizzell, K.3    Berrocal, J.4    Kininis, M.5    Kraus, W.6
  • 130
    • 71749119589 scopus 로고    scopus 로고
    • Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase 1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells
    • Frizzell K, Gamble M, Berrocal J, Zhang T, Krishnakumar R, et al. 2009. Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase 1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells. J. Biol. Chem. 284:33926-38
    • (2009) J. Biol. Chem. , vol.284 , pp. 33926-33938
    • Frizzell, K.1    Gamble, M.2    Berrocal, J.3    Zhang, T.4    Krishnakumar, R.5
  • 131
    • 84870703762 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 2: Emerging transcriptional roles of a DNA-repair protein
    • Szántó M, Brunyánszki A, Kiss B, Nagy L, Gergely P, et al. 2012. Poly(ADP-ribose) polymerase 2: emerging transcriptional roles of a DNA-repair protein. Cell Mol. Life Sci. 69:4079-92
    • (2012) Cell Mol. Life Sci. , vol.69 , pp. 4079-4092
    • Szántó, M.1    Brunyánszki, A.2    Kiss, B.3    Nagy, L.4    Gergely, P.5
  • 132
    • 79953761260 scopus 로고    scopus 로고
    • PARP-2 regulates SIRT1 expression and whole-body energy expenditure
    • Bai P, Canto C, Brunyánszki A, Huber A, Szántó M, et al. 2011. PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab. 13:450-60
    • (2011) Cell Metab , vol.13 , pp. 450-460
    • Bai, P.1    Canto, C.2    Brunyánszki, A.3    Huber, A.4    Szántó, M.5
  • 133
    • 79251586265 scopus 로고    scopus 로고
    • A key role for poly(ADP-ribose) polymerase 3 in ectodermal specification and neural crest development
    • Rouleau M, Saxena V, Rodrigue A, Paquet ER, Gagnon A, et al. 2011. A key role for poly(ADP-ribose) polymerase 3 in ectodermal specification and neural crest development. PLOS ONE 6:e15834
    • (2011) PLOS ONE , vol.6 , pp. e15834
    • Rouleau, M.1    Saxena, V.2    Rodrigue, A.3    Paquet, E.R.4    Gagnon, A.5
  • 134
    • 84864680102 scopus 로고    scopus 로고
    • Formation of nuclear heterochromatin: The nucleolar point of view
    • Guetg C, Santoro R. 2012. Formation of nuclear heterochromatin: the nucleolar point of view. Epigenetics 7:811-14
    • (2012) Epigenetics , vol.7 , pp. 811-814
    • Guetg, C.1    Santoro, R.2
  • 135
    • 84857463264 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 1 (PARP-1) regulates ribosomal biogenesis in Drosophila nucleoli
    • Boamah EK, Kotova E, Garabedian M, Jarnik M, Tulin AV. 2012. Poly(ADP-ribose) polymerase 1 (PARP-1) regulates ribosomal biogenesis in Drosophila nucleoli. PLOS Genet. 8:e1002442
    • (2012) PLOS Genet. , vol.8 , pp. e1002442
    • Boamah, E.K.1    Kotova, E.2    Garabedian, M.3    Jarnik, M.4    Tulin, A.V.5
  • 136
    • 14044273481 scopus 로고    scopus 로고
    • PARP-1 and PARP-2 interact with nucleophosmin/ B23 and accumulate in transcriptionally active nucleoli
    • Meder VS, Boeglin M, de Murcia G, Schreiber V. 2005. PARP-1 and PARP-2 interact with nucleophosmin/ B23 and accumulate in transcriptionally active nucleoli. J. Cell Sci. 118:211-22
    • (2005) J. Cell Sci. , vol.118 , pp. 211-222
    • Meder, V.S.1    Boeglin, M.2    De Murcia, G.3    Schreiber, V.4
  • 138
    • 0037106439 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 2 localizes to mammalian active centromeres and interacts with PARP-1, Cenpa, Cenpb and Bub3, but not Cenpc
    • Saxena A, Wong LH, Kalitsis P, Earle E, Shaffer LG, Choo KH. 2002. Poly(ADP-ribose) polymerase 2 localizes to mammalian active centromeres and interacts with PARP-1, Cenpa, Cenpb and Bub3, but not Cenpc. Hum. Mol. Genet. 11:2319-29
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 2319-2329
    • Saxena, A.1    Wong, L.H.2    Kalitsis, P.3    Earle, E.4    Shaffer, L.G.5    Choo, K.H.6
  • 139
    • 55549119952 scopus 로고    scopus 로고
    • The histone subcode: Poly(ADP-ribose) polymerase 1 (Parp-1) and Parp-2 control cell differentiation by regulating the transcriptional intermediary factor TIF1βand the heterochromatin protein HP1α
    • Quénet D, Gasser V, Fouillen L, Cammas F, Sanglier-Cianferani S, et al. 2008. The histone subcode: Poly(ADP-ribose) polymerase 1 (Parp-1) and Parp-2 control cell differentiation by regulating the transcriptional intermediary factor TIF1βand the heterochromatin protein HP1α. FASEB J. 22:3853-65
    • (2008) FASEB J. , vol.22 , pp. 3853-3865
    • Quénet, D.1    Gasser, V.2    Fouillen, L.3    Cammas, F.4    Sanglier-Cianferani, S.5
  • 140
    • 27444438371 scopus 로고    scopus 로고
    • NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis
    • Chang W, Dynek JN, Smith S. 2005. NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis. Biochem. J. 391:177-84
    • (2005) Biochem. J. , vol.391 , pp. 177-184
    • Chang, W.1    Dynek, J.N.2    Smith, S.3
  • 141
    • 36749045682 scopus 로고    scopus 로고
    • Tankyrase function at telomeres, spindle poles, and beyond
    • Hsiao S, Smith S. 2008. Tankyrase function at telomeres, spindle poles, and beyond. Biochimie 90:83-92
    • (2008) Biochimie , vol.90 , pp. 83-92
    • Hsiao, S.1    Smith, S.2
  • 142
    • 33745255099 scopus 로고    scopus 로고
    • A topoisomerase IIβ-mediated dsDNA break required for regulated transcription
    • Ju B-G, Lunyak V, Perissi V, Garcia-Bassets I, Rose D, et al. 2006. A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312:1798-802
    • (2006) Science , vol.312 , pp. 1798-1802
    • Ju, B.-G.1    Lunyak, V.2    Perissi, V.3    Garcia-Bassets, I.4    Rose, D.5
  • 143
    • 84855242257 scopus 로고    scopus 로고
    • Poly(ADP-ribose)polymerase 1 (PARP1) controls adipogenic gene expression and adipocyte function
    • Erener S, Hesse M, Kostadinova R, Hottiger MO. 2012. Poly(ADP-ribose)polymerase 1 (PARP1) controls adipogenic gene expression and adipocyte function. Mol. Endocrinol. 26:79-86
    • (2012) Mol. Endocrinol. , vol.26 , pp. 79-86
    • Erener, S.1    Hesse, M.2    Kostadinova, R.3    Hottiger, M.O.4
  • 144
    • 84857891632 scopus 로고    scopus 로고
    • On PAR with PARP: Cellular stress signaling through poly(ADP-ribose) and PARP-1
    • Luo X, Kraus WL. 2012. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 26:417-32
    • (2012) Genes Dev. , vol.26 , pp. 417-432
    • Luo, X.1    Kraus, W.L.2
  • 145
    • 10944227347 scopus 로고    scopus 로고
    • NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1
    • Kim M, Mauro S, Gévry N, Lis J, Kraus W. 2004. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 119:803-14
    • (2004) Cell , vol.119 , pp. 803-814
    • Kim, M.1    Mauro, S.2    Gévry, N.3    Lis, J.4    Kraus, W.5
  • 146
    • 84896698176 scopus 로고    scopus 로고
    • Kinase-mediated changes in nucleosome conformation trigger chromatin decondensation via poly(ADP-ribosyl)ation
    • Thomas CJ, Kotova E, Andrake M, Adolf-Bryfogle J, Glaser R, et al. 2014. Kinase-mediated changes in nucleosome conformation trigger chromatin decondensation via poly(ADP-ribosyl)ation. Mol. Cell 53:831-42
    • (2014) Mol. Cell , vol.53 , pp. 831-842
    • Thomas, C.J.1    Kotova, E.2    Andrake, M.3    Adolf-Bryfogle, J.4    Glaser, R.5
  • 147
  • 148
    • 33845445006 scopus 로고    scopus 로고
    • The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity
    • Ouararhni K, Hadj-Slimane R, Ait-Si-Ali S, Robin P, Mietton F, et al. 2006. The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity. Genes Dev. 20:3324-36
    • (2006) Genes Dev. , vol.20 , pp. 3324-3336
    • Ouararhni, K.1    Hadj-Slimane, R.2    Ait-Si-Ali, S.3    Robin, P.4    Mietton, F.5
  • 149
    • 84865839222 scopus 로고    scopus 로고
    • CDK2-dependent activation of PARP-1 is required for hormonal gene regulation in breast cancer cells
    • Wright RH, Castellano G, Bonet J, Le Dily F, Font-Mateu J, et al. 2012. CDK2-dependent activation of PARP-1 is required for hormonal gene regulation in breast cancer cells. Genes Dev. 26:1972-83
    • (2012) Genes Dev. , vol.26 , pp. 1972-1983
    • Wright, R.H.1    Castellano, G.2    Bonet, J.3    Le Dily, F.4    Font-Mateu, J.5
  • 150
    • 84885636888 scopus 로고    scopus 로고
    • SET7/9-dependent methylation of ARTD1 at K508 stimulates poly-ADP-ribose formation after oxidative stress
    • Kassner I, Andersson A, Fey M, Tomas M, Ferrando-May E, Hottiger MO. 2013. SET7/9-dependent methylation of ARTD1 at K508 stimulates poly-ADP-ribose formation after oxidative stress. Open Biol. 3:120173
    • (2013) Open Biol. , vol.3 , pp. 120173
    • Kassner, I.1    Andersson, A.2    Fey, M.3    Tomas, M.4    Ferrando-May, E.5    Hottiger, M.O.6
  • 151
    • 77954274504 scopus 로고    scopus 로고
    • The PARP side of the nucleus: Molecular actions, physiological outcomes, and clinical targets
    • Krishnakumar R, Kraus W. 2010. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol. Cell 39:8-24
    • (2010) Mol. Cell , vol.39 , pp. 8-24
    • Krishnakumar, R.1    Kraus, W.2
  • 152
    • 0037462597 scopus 로고    scopus 로고
    • Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci
    • Tulin A, Spradling A. 2003. Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 299:560-62
    • (2003) Science , vol.299 , pp. 560-562
    • Tulin, A.1    Spradling, A.2
  • 153
    • 84859506559 scopus 로고    scopus 로고
    • Regulation of poly(ADPribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase
    • Zhang T, Berrocal JG, Yao J, DuMond ME, Krishnakumar R, et al. 2012. Regulation of poly(ADPribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase. J. Biol. Chem. 287:12405-16
    • (2012) J. Biol. Chem. , vol.287 , pp. 12405-12416
    • Zhang, T.1    Berrocal, J.G.2    Yao, J.3    Dumond, M.E.4    Krishnakumar, R.5
  • 154
    • 84869009900 scopus 로고    scopus 로고
    • Nucleosomal elements that control the topography of the barrier to transcription
    • Bintu L, Ishibashi T, Dangkulwanich M, Wu YY, Lubkowska L, et al. 2012. Nucleosomal elements that control the topography of the barrier to transcription. Cell 151:738-49
    • (2012) Cell , vol.151 , pp. 738-749
    • Bintu, L.1    Ishibashi, T.2    Dangkulwanich, M.3    Wu, Y.Y.4    Lubkowska, L.5
  • 155
    • 84861531483 scopus 로고    scopus 로고
    • Overcoming the nucleosome barrier during transcript elongation
    • Petesch SJ, Lis JT. 2012. Overcoming the nucleosome barrier during transcript elongation. Trends Genet. 28:285-94
    • (2012) Trends Genet. , vol.28 , pp. 285-294
    • Petesch, S.J.1    Lis, J.T.2
  • 156
    • 2942703171 scopus 로고
    • Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure
    • Poirier G, de Murcia G, Jongstra-Bilen J, Niedergang C, Mandel P. 1982. Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. PNAS 79:3423-27
    • (1982) PNAS , vol.79 , pp. 3423-3427
    • Poirier, G.1    De Murcia, G.2    Jongstra-Bilen, J.3    Niedergang, C.4    Mandel, P.5
  • 157
    • 0022497202 scopus 로고
    • Poly(ADP-ribose) accessibility to poly(ADPribose) glycohydrolase activity on poly(ADP-ribosyl)ated nucleosomal proteins
    • Gaudreau A, Menard L, de Murcia G, Poirier GG. 1986. Poly(ADP-ribose) accessibility to poly(ADPribose) glycohydrolase activity on poly(ADP-ribosyl)ated nucleosomal proteins. Biochem. Cell Biol. 64:146-53
    • (1986) Biochem. Cell Biol. , vol.64 , pp. 146-153
    • Gaudreau, A.1    Menard, L.2    De Murcia, G.3    Poirier, G.G.4
  • 158
    • 0026730009 scopus 로고
    • Histone shuttling by poly(ADP-ribosylation)
    • Realini C, Althaus F. 1992. Histone shuttling by poly(ADP-ribosylation). J. Biol. Chem. 267:18858-65
    • (1992) J. Biol. Chem. , vol.267 , pp. 18858-18865
    • Realini, C.1    Althaus, F.2
  • 159
    • 84860325913 scopus 로고    scopus 로고
    • Inflammasome-activated caspase 7 cleaves PARP1 to enhance the expression of a subset of NF-κB target genes
    • Erener S, Petrilli V, Kassner I, Minotti R, Castillo R, et al. 2012. Inflammasome-activated caspase 7 cleaves PARP1 to enhance the expression of a subset of NF-κB target genes. Mol. Cell 46:200-11
    • (2012) Mol. Cell , vol.46 , pp. 200-211
    • Erener, S.1    Petrilli, V.2    Kassner, I.3    Minotti, R.4    Castillo, R.5
  • 160
    • 0021759013 scopus 로고
    • Association of poly(adenosine diphosphate ribosylated) nucleosomes with transcriptionally active and inactive regions of chromatin
    • Hough C, Smulson M. 1984. Association of poly(adenosine diphosphate ribosylated) nucleosomes with transcriptionally active and inactive regions of chromatin. Biochemistry 23:5016-23
    • (1984) Biochemistry , vol.23 , pp. 5016-5023
    • Hough, C.1    Smulson, M.2
  • 161
    • 15044354027 scopus 로고    scopus 로고
    • Polynucleosomal synthesis of poly(ADP-ribose) causes chromatin unfolding as determined by micrococcal nuclease digestion
    • Perez-Lamigueiro MA, Alvarez-Gonzalez R. 2004. Polynucleosomal synthesis of poly(ADP-ribose) causes chromatin unfolding as determined by micrococcal nuclease digestion. Ann. N. Y. Acad. Sci. 1030:593-98
    • (2004) Ann. N. Y. Acad. Sci. , vol.1030 , pp. 593-598
    • Perez-Lamigueiro, M.A.1    Alvarez-Gonzalez, R.2
  • 162
    • 0009577682 scopus 로고    scopus 로고
    • Poly(ADP-ribosyl)ation of histone H1 correlates with internucleosomal DNA fragmentation during apoptosis
    • Yoon YS, Kim JW, Kang KW, Kim YS, Choi KH, Joe CO. 1996. Poly(ADP-ribosyl)ation of histone H1 correlates with internucleosomal DNA fragmentation during apoptosis. J. Biol. Chem. 271:9129-34
    • (1996) J. Biol. Chem. , vol.271 , pp. 9129-9134
    • Yoon, Y.S.1    Kim, J.W.2    Kang, K.W.3    Kim, Y.S.4    Choi, K.H.5    Joe, C.O.6
  • 163
    • 0020981536 scopus 로고
    • Correlation between endogenous nucleosomal hyper(ADP-ribosyl)ation of histone H1 and the induction of chromatin relaxation
    • Aubin RJ, Frechette A, de Murcia G, Mandel P, Lord A, et al. 1983. Correlation between endogenous nucleosomal hyper(ADP-ribosyl)ation of histone H1 and the induction of chromatin relaxation. EMBO J. 2:1685-93
    • (1983) EMBO J. , vol.2 , pp. 1685-1693
    • Aubin, R.J.1    Frechette, A.2    De Murcia, G.3    Mandel, P.4    Lord, A.5
  • 164
    • 35648955118 scopus 로고    scopus 로고
    • The DNA binding and catalytic domains of poly(ADP-ribose) polymerase 1 cooperate in the regulation of chromatin structure and transcription
    • Wacker D, Ruhl D, Balagamwala E, Hope K, Zhang T, Kraus W. 2007. The DNA binding and catalytic domains of poly(ADP-ribose) polymerase 1 cooperate in the regulation of chromatin structure and transcription. Mol. Cell. Biol. 27:7475-85
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 7475-7485
    • Wacker, D.1    Ruhl, D.2    Balagamwala, E.3    Hope, K.4    Zhang, T.5    Kraus, W.6
  • 165
    • 69949123856 scopus 로고    scopus 로고
    • Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1
    • Ahel D, Horejsí Z, Wiechens N, Polo SE, Garcia-Wilson E, et al. 2009. Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 325:1240-43
    • (2009) Science , vol.325 , pp. 1240-1243
    • Ahel, D.1    Horejsí, Z.2    Wiechens, N.3    Polo, S.E.4    Garcia-Wilson, E.5
  • 166
    • 69549083315 scopus 로고    scopus 로고
    • Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler
    • Gottschalk A, Timinszky G, Kong S, Jin J, Cai Y, et al. 2009. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. PNAS 106:13770-74
    • (2009) PNAS , vol.106 , pp. 13770-13774
    • Gottschalk, A.1    Timinszky, G.2    Kong, S.3    Jin, J.4    Cai, Y.5
  • 167
    • 54949146473 scopus 로고    scopus 로고
    • The nucleosome-remodeling ATPase ISWI is regulated by poly-ADP-ribosylation
    • Sala A, La Rocca G, Burgio G, Kotova E, Di Gesu D, et al. 2008. The nucleosome-remodeling ATPase ISWI is regulated by poly-ADP-ribosylation. PLOS Biol. 6:e252
    • (2008) PLOS Biol. , vol.6 , pp. e252
    • Sala, A.1    La Rocca, G.2    Burgio, G.3    Kotova, E.4    Di Gesu, D.5
  • 168
    • 41549112501 scopus 로고    scopus 로고
    • FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16
    • Heo K, Kim H, Choi SH, Choi J, Kim K, et al. 2008. FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16. Mol. Cell 30:86-97
    • (2008) Mol. Cell , vol.30 , pp. 86-97
    • Heo, K.1    Kim, H.2    Choi, S.H.3    Choi, J.4    Kim, K.5
  • 169
    • 80052172007 scopus 로고    scopus 로고
    • Histone ADP-ribosylation inDNArepair, replication and transcription
    • Messner S, Hottiger MO. 2011. Histone ADP-ribosylation inDNArepair, replication and transcription. Trends Cell Biol. 21:534-42
    • (2011) Trends Cell Biol. , vol.21 , pp. 534-542
    • Messner, S.1    Hottiger, M.O.2
  • 171
    • 0018068955 scopus 로고
    • ADP-ribosylated histoneH1 fromHeLa cultures: Fundamental differences to (ADP-ribose)n-histone H1 conjugates formed in vitro
    • Adamietz P, Bredehorst R, Hilz H. 1978. ADP-ribosylated histoneH1 fromHeLa cultures: fundamental differences to (ADP-ribose)n-histone H1 conjugates formed in vitro. Eur. J. Biochem. 91:317-26
    • (1978) Eur. J. Biochem. , vol.91 , pp. 317-326
    • Adamietz, P.1    Bredehorst, R.2    Hilz, H.3
  • 172
    • 0018800811 scopus 로고
    • ADP ribosylation of rat liver nucleosomal core histones
    • Burzio L, Riquelme P, Koide S. 1979. ADP ribosylation of rat liver nucleosomal core histones. J. Biol. Chem. 254:3029-37
    • (1979) J. Biol. Chem. , vol.254 , pp. 3029-3037
    • Burzio, L.1    Riquelme, P.2    Koide, S.3
  • 174
    • 78650756134 scopus 로고    scopus 로고
    • PARP-3 and APLF function together to accelerate nonhomologous end-joining
    • Rulten SL, Fisher AE, Robert I, Zuma MC, Rouleau M, et al. 2011. PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol. Cell 41:33-45
    • (2011) Mol. Cell , vol.41 , pp. 33-45
    • Rulten, S.L.1    Fisher, A.E.2    Robert, I.3    Zuma, M.C.4    Rouleau, M.5
  • 175
    • 84873694897 scopus 로고    scopus 로고
    • 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADPribosyltransferase and repressor of aryl hydrocarbon receptor transactivation
    • MacPherson L, Tamblyn L, Rajendra S, Bralha F, McPherson JP, Matthews J. 2013. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADPribosyltransferase and repressor of aryl hydrocarbon receptor transactivation. Nucleic Acids Res. 41:1604-21
    • (2013) Nucleic Acids Res. , vol.41 , pp. 1604-1621
    • Macpherson, L.1    Tamblyn, L.2    Rajendra, S.3    Bralha, F.4    McPherson, J.P.5    Matthews, J.6
  • 176
    • 0019332813 scopus 로고
    • ADP-ribosylation of histone H1. Identification of glutamic acid residues 2, 14, and the COOH-terminal lysine residue as modification sites
    • Ogata N, Ueda K, Kagamiyama H, Hayaishi O. 1980. ADP-ribosylation of histone H1. Identification of glutamic acid residues 2, 14, and the COOH-terminal lysine residue as modification sites. J. Biol. Chem. 255:7616-20
    • (1980) J. Biol. Chem. , vol.255 , pp. 7616-7620
    • Ogata, N.1    Ueda, K.2    Kagamiyama, H.3    Hayaishi, O.4
  • 177
    • 0019332846 scopus 로고
    • ADP-ribosylation of histone H2B. Identification of glutamic acid residue 2 as the modification site
    • Ogata N, Ueda K, Hayaishi O. 1980. ADP-ribosylation of histone H2B. Identification of glutamic acid residue 2 as the modification site. J. Biol. Chem. 255:7610-15
    • (1980) J. Biol. Chem. , vol.255 , pp. 7610-7615
    • Ogata, N.1    Ueda, K.2    Hayaishi, O.3
  • 178
    • 0021971315 scopus 로고
    • Amino acid sequence of histone H1 at the ADP-ribose-accepting site and ADP-ribose X histone H1 adduct as an inhibitor of cyclic-AMP-dependent phosphorylation
    • Ushiroyama T, Tanigawa Y, Tsuchiya M, Matsuura R, Ueki M, et al. 1985. Amino acid sequence of histone H1 at the ADP-ribose-accepting site and ADP-ribose X histone H1 adduct as an inhibitor of cyclic-AMP-dependent phosphorylation. Eur. J. Biochem. 151:173-77
    • (1985) Eur. J. Biochem. , vol.151 , pp. 173-177
    • Ushiroyama, T.1    Tanigawa, Y.2    Tsuchiya, M.3    Matsuura, R.4    Ueki, M.5
  • 179
    • 0141929385 scopus 로고    scopus 로고
    • Binary switches and modification cassettes in histone biology and beyond
    • Fischle W, Wang Y, Allis CD. 2003. Binary switches and modification cassettes in histone biology and beyond. Nature 425:475-79
    • (2003) Nature , vol.425 , pp. 475-479
    • Fischle, W.1    Wang, Y.2    Allis, C.D.3
  • 180
    • 24744436674 scopus 로고    scopus 로고
    • An epigenetic code forDNA damage repair pathways?
    • Hassa PO, HottigerMO. 2005. An epigenetic code forDNA damage repair pathways? Biochem. Cell Biol. 83:270-85
    • (2005) Biochem. Cell Biol. , vol.83 , pp. 270-285
    • Hassa, P.O.1    Hottiger, M.O.2
  • 181
    • 0021774521 scopus 로고
    • A relationship between nuclear poly(adenosine diphosphate ribosylation) and acetylation posttranslational modifications 1. Nucleosome studies
    • Malik N, Smulson M. 1984. A relationship between nuclear poly(adenosine diphosphate ribosylation) and acetylation posttranslational modifications. 1. Nucleosome studies. Biochemistry 23:3721-25
    • (1984) Biochemistry , vol.23 , pp. 3721-3725
    • Malik, N.1    Smulson, M.2
  • 182
    • 0021099478 scopus 로고
    • Relationship between histone H1 poly(adenosine diphosphate ribosylation) and histone H1 phosphorylation using anti-poly(adenosine diphosphate ribose) antibody
    • Wong M, Miwa M, Sugimura T, Smulson M. 1983. Relationship between histone H1 poly(adenosine diphosphate ribosylation) and histone H1 phosphorylation using anti-poly(adenosine diphosphate ribose) antibody. Biochemistry 22:2384-89
    • (1983) Biochemistry , vol.22 , pp. 2384-2389
    • Wong, M.1    Miwa, M.2    Sugimura, T.3    Smulson, M.4
  • 183
  • 184
    • 84871743304 scopus 로고    scopus 로고
    • Crosstalk between SET7/9-dependent methylation and ARTD1-mediated ADP-ribosylation of histone H1.4
    • Kassner I, Barandun M, Fey M, Rosenthal F, Hottiger MO. 2013. Crosstalk between SET7/9-dependent methylation and ARTD1-mediated ADP-ribosylation of histone H1.4. Epigenetics Chromatin 6:1
    • (2013) Epigenetics Chromatin , vol.6 , pp. 1
    • Kassner, I.1    Barandun, M.2    Fey, M.3    Rosenthal, F.4    Hottiger, M.O.5
  • 185
    • 77956526559 scopus 로고    scopus 로고
    • PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway
    • Krishnakumar R, Kraus W. 2010. PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway. Mol. Cell 39:736-49
    • (2010) Mol. Cell , vol.39 , pp. 736-749
    • Krishnakumar, R.1    Kraus, W.2
  • 186
    • 84870931289 scopus 로고    scopus 로고
    • Poly(ADP-ribose) glycohydrolase regulates retinoic acid receptor-mediated gene expression
    • Le May N, Iltis I, Amé JC, Zhovmer A, Biard D, et al. 2012. Poly(ADP-ribose) glycohydrolase regulates retinoic acid receptor-mediated gene expression. Mol. Cell 48:785-98
    • (2012) Mol. Cell , vol.48 , pp. 785-798
    • Le May, N.1    Iltis, I.2    Amé, J.C.3    Zhovmer, A.4    Biard, D.5
  • 187
    • 34249337761 scopus 로고    scopus 로고
    • Perceptions of epigenetics
    • Bird A. 2007. Perceptions of epigenetics. Nature 447:396-98
    • (2007) Nature , vol.447 , pp. 396-398
    • Bird, A.1
  • 189
    • 0032925999 scopus 로고    scopus 로고
    • Reduced levels of poly(ADPribosyl) ation result in chromatin compaction and hypermethylation as shown by cell-by-cell computerassisted quantitative analysis
    • de Capoa A, Febbo F, Giovannelli F, Niveleau A, Zardo G, et al. 1999. Reduced levels of poly(ADPribosyl) ation result in chromatin compaction and hypermethylation as shown by cell-by-cell computerassisted quantitative analysis. FASEB J. 13:89-93
    • (1999) FASEB J. , vol.13 , pp. 89-93
    • De Capoa, A.1    Febbo, F.2    Giovannelli, F.3    Niveleau, A.4    Zardo, G.5
  • 191
    • 84555178345 scopus 로고    scopus 로고
    • ADP-ribose polymers localized onCtcf-Parp1-Dnmt1 complex preventmethylation ofCtcf target sites
    • Zampieri M, Guastafierro T, Calabrese R, Ciccarone F, Bacalini MG, et al. 2012. ADP-ribose polymers localized onCtcf-Parp1-Dnmt1 complex preventmethylation ofCtcf target sites. Biochem. J. 441:645-52
    • (2012) Biochem. J. , vol.441 , pp. 645-652
    • Zampieri, M.1    Guastafierro, T.2    Calabrese, R.3    Ciccarone, F.4    Bacalini, M.G.5
  • 192
    • 6944231017 scopus 로고    scopus 로고
    • Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation
    • Yu W, Ginjala V, Pant V, Chernukhin I, Whitehead J, et al. 2004. Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation. Nat. Genet. 36:1105-10
    • (2004) Nat. Genet. , vol.36 , pp. 1105-1110
    • Yu, W.1    Ginjala, V.2    Pant, V.3    Chernukhin, I.4    Whitehead, J.5
  • 193
    • 4444365791 scopus 로고    scopus 로고
    • Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome
    • Sparago A, Cerrato F, Vernucci M, Ferrero GB, Silengo MC, Riccio A. 2004. Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome. Nat. Genet. 36:958-60
    • (2004) Nat. Genet. , vol.36 , pp. 958-960
    • Sparago, A.1    Cerrato, F.2    Vernucci, M.3    Ferrero, G.B.4    Silengo, M.C.5    Riccio, A.6
  • 194
    • 77953596050 scopus 로고    scopus 로고
    • Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes
    • Wossidlo M, Arand J, Sebastiano V, Lepikhov K, Boiani M, et al. 2010. Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J. 29:1877-88
    • (2010) EMBO J. , vol.29 , pp. 1877-1888
    • Wossidlo, M.1    Arand, J.2    Sebastiano, V.3    Lepikhov, K.4    Boiani, M.5
  • 195
    • 79961224298 scopus 로고    scopus 로고
    • Epigenetic reprogramming of mouse germ cells toward totipotency
    • Surani MA, Hajkova P. 2010. Epigenetic reprogramming of mouse germ cells toward totipotency. Cold Spring Harb. Symp. Quant. Biol. 75:211-18
    • (2010) Cold Spring Harb. Symp. Quant. Biol. , vol.75 , pp. 211-218
    • Surani, M.A.1    Hajkova, P.2
  • 196
    • 33846850216 scopus 로고    scopus 로고
    • Transcriptional profiling of the LPS induced NF-κB response in macrophages
    • Sharif O, Bolshakov V, Raines S, Newham P, Perkins N. 2007. Transcriptional profiling of the LPS induced NF-κB response in macrophages. BMC Immunol. 8:1
    • (2007) BMC Immunol , vol.8 , pp. 1
    • Sharif, O.1    Bolshakov, V.2    Raines, S.3    Newham, P.4    Perkins, N.5
  • 197
    • 84902138590 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 1 (PARP1) associates with E3 ubiquitin-protein ligase UHRF1 and modulates UHRF1 biological functions
    • de Vos M, El Ramy R, Quenet D, Wolf P, Spada F, et al. 2014. Poly(ADP-ribose) polymerase 1 (PARP1) associates with E3 ubiquitin-protein ligase UHRF1 and modulates UHRF1 biological functions. J. Biol. Chem. 289:16223-38
    • (2014) J. Biol. Chem. , vol.289 , pp. 16223-16238
    • De Vos, M.1    El Ramy, R.2    Quenet, D.3    Wolf, P.4    Spada, F.5
  • 199
    • 33749530027 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 2 contributes to the fidelity of male meiosis i and spermiogenesis
    • Dantzer F, Mark M, Quenet D, Scherthan H, Huber A, et al. 2006. Poly(ADP-ribose) polymerase 2 contributes to the fidelity of male meiosis I and spermiogenesis. PNAS 103:14854-59
    • (2006) PNAS , vol.103 , pp. 14854-14859
    • Dantzer, F.1    Mark, M.2    Quenet, D.3    Scherthan, H.4    Huber, A.5
  • 200
    • 33846453969 scopus 로고    scopus 로고
    • PARP-3 associates with Polycomb group bodies and with components of the DNA damage repair machinery
    • Rouleau M, McDonald D, Gagne P, Ouellet ME, Droit A, et al. 2007. PARP-3 associates with Polycomb group bodies and with components of the DNA damage repair machinery. J. Cell Biochem. 100:385-401
    • (2007) J. Cell Biochem. , vol.100 , pp. 385-401
    • Rouleau, M.1    McDonald, D.2    Gagne, P.3    Ouellet, M.E.4    Droit, A.5
  • 201
    • 84903137943 scopus 로고    scopus 로고
    • Bookmarking promoters in mitotic chromatin: Poly(ADPribose) polymerase 1 as an epigenetic mark
    • Lodhi N, Kossenkov AV, Tulin AV. 2014. Bookmarking promoters in mitotic chromatin: poly(ADPribose) polymerase 1 as an epigenetic mark. Nucleic Acids Res. 42:7028-38
    • (2014) Nucleic Acids Res. , vol.42 , pp. 7028-7038
    • Lodhi, N.1    Kossenkov, A.V.2    Tulin, A.V.3
  • 202
    • 0034733928 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 1:What have we learned from the deficient mouse model?
    • Shall S, de Murcia G. 2000. Poly(ADP-ribose) polymerase 1:What have we learned from the deficient mouse model? Mutat. Res. 460:1-15
    • (2000) Mutat. Res. , vol.460 , pp. 1-15
    • Shall, S.1    De Murcia, G.2
  • 206
    • 0034171108 scopus 로고    scopus 로고
    • Myocardial postischemic injury is reduced by polyADPripose polymerase 1 gene disruption
    • Pieper AA, Walles T, Wei G, Clements EE, Verma A, et al. 2000. Myocardial postischemic injury is reduced by polyADPripose polymerase 1 gene disruption. Mol. Med. 6:271-82
    • (2000) Mol. Med. , vol.6 , pp. 271-282
    • Pieper, A.A.1    Walles, T.2    Wei, G.3    Clements, E.E.4    Verma, A.5
  • 207
    • 84861775176 scopus 로고    scopus 로고
    • ARTD1deletion causes increased hepatic lipid accumulation in mice fed a high-fat diet and impairs adipocyte function and differentiation
    • Erener S, Mirsaidi A, Hesse M, Tiaden AN, Ellingsgaard H, et al. 2012. ARTD1deletion causes increased hepatic lipid accumulation in mice fed a high-fat diet and impairs adipocyte function and differentiation. FASEB J. 26:2631-38
    • (2012) FASEB J. , vol.26 , pp. 2631-2638
    • Erener, S.1    Mirsaidi, A.2    Hesse, M.3    Tiaden, A.N.4    Ellingsgaard, H.5
  • 208
    • 0038219534 scopus 로고    scopus 로고
    • Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse
    • Menissier de Murcia J, Ricoul M, Tartier L, Niedergang C, Huber A, et al. 2003. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 22:2255-63
    • (2003) EMBO J. , vol.22 , pp. 2255-2263
    • De Murcia Menissier, J.1    Ricoul, M.2    Tartier, L.3    Niedergang, C.4    Huber, A.5
  • 209
    • 41549155890 scopus 로고    scopus 로고
    • Toward specific functions of poly(ADP-ribose) polymerase-2
    • Yelamos J, Schreiber V, Dantzer F. 2008. Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol. Med. 14:169-78
    • (2008) Trends Mol. Med. , vol.14 , pp. 169-178
    • Yelamos, J.1    Schreiber, V.2    Dantzer, F.3
  • 210
    • 33748929288 scopus 로고    scopus 로고
    • PARP-2 deficiency affects the survival of CD4+CD8+ double-positive thymocytes
    • Yelamos J, Monreal Y, Saenz L, Aguado E, Schreiber V, et al. 2006. PARP-2 deficiency affects the survival of CD4+CD8+ double-positive thymocytes. EMBO J. 25:4350-60
    • (2006) EMBO J. , vol.25 , pp. 4350-4360
    • Yelamos, J.1    Monreal, Y.2    Saenz, L.3    Aguado, E.4    Schreiber, V.5
  • 211
    • 38049129655 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase (PPAR)-2 controls adipocyte differentiation and adipose tissue function through the regulation of the activity of the retinoid X receptor/PPAR2γheterodimer
    • Bai P, Houten SM, Huber A, Schreiber V, Watanabe M, et al. 2007. Poly(ADP-ribose) polymerase (PPAR)-2 controls adipocyte differentiation and adipose tissue function through the regulation of the activity of the retinoid X receptor/PPAR2γheterodimer. J. Biol. Chem. 282:37738-46
    • (2007) J. Biol. Chem. , vol.282 , pp. 37738-37746
    • Bai, P.1    Houten, S.M.2    Huber, A.3    Schreiber, V.4    Watanabe, M.5
  • 212
    • 10744233161 scopus 로고    scopus 로고
    • Functional interaction between poly(ADP-ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2
    • Dantzer F, Giraud-Panis MJ, Jaco I, Amé JC, Schultz I, et al. 2004. Functional interaction between poly(ADP-ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Mol. Cell. Biol. 24:1595-607
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 1595-1607
    • Dantzer, F.1    Giraud-Panis, M.J.2    Jaco, I.3    Amé, J.C.4    Schultz, I.5
  • 213
    • 84893489225 scopus 로고    scopus 로고
    • Deletion of PARP-2 induces hepatic cholesterol accumulation and decrease in HDL levels
    • Szántó M, Brunyánszki A, Marton J, Vamosi G, Nagy L, et al. 2014. Deletion of PARP-2 induces hepatic cholesterol accumulation and decrease in HDL levels. Biochim. Biophys. Acta 1842:594-602
    • (2014) Biochim. Biophys. Acta , vol.1842 , pp. 594-602
    • Szántó, M.1    Brunyánszki, A.2    Marton, J.3    Vamosi, G.4    Nagy, L.5
  • 214
    • 79952599748 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression
    • Boehler C, Gauthier LR, Mortusewicz O, Biard DS, Saliou JM, et al. 2011. Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. PNAS 108:2783-88
    • (2011) PNAS , vol.108 , pp. 2783-2788
    • Boehler, C.1    Gauthier, L.R.2    Mortusewicz, O.3    Biard, D.S.4    Saliou, J.M.5
  • 215
    • 25444468291 scopus 로고    scopus 로고
    • Increased susceptibility of vault poly(ADP-ribose) polymerase-deficient mice to carcinogen-induced tumorigenesis
    • Raval-Fernandes S, Kickhoefer VA, Kitchen C, Rome LH. 2005. Increased susceptibility of vault poly(ADP-ribose) polymerase-deficient mice to carcinogen-induced tumorigenesis. Cancer Res. 65:8846-52
    • (2005) Cancer Res. , vol.65 , pp. 8846-8852
    • Raval-Fernandes, S.1    Kickhoefer, V.A.2    Kitchen, C.3    Rome, L.H.4
  • 216
    • 33644774924 scopus 로고    scopus 로고
    • Tankyrase 2 poly(ADP-ribose) polymerase domain-deleted mice exhibit growth defects but have normal telomere length and capping
    • Hsiao SJ, Poitras MF, Cook BD, Liu Y, Smith S. 2006. Tankyrase 2 poly(ADP-ribose) polymerase domain-deleted mice exhibit growth defects but have normal telomere length and capping. Mol. Cell. Biol. 26:2044-54
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 2044-2054
    • Hsiao, S.J.1    Poitras, M.F.2    Cook, B.D.3    Liu, Y.4    Smith, S.5
  • 217
    • 70350539541 scopus 로고    scopus 로고
    • Hypermetabolism, hyperphagia, and reduced adiposity in tankyrase-deficient mice
    • Yeh TY, Beiswenger KK, Li P, Bolin KE, Lee RM, et al. 2009. Hypermetabolism, hyperphagia, and reduced adiposity in tankyrase-deficient mice. Diabetes 58:2476-85
    • (2009) Diabetes , vol.58 , pp. 2476-2485
    • Yeh, T.Y.1    Beiswenger, K.K.2    Li, P.3    Bolin, K.E.4    Lee, R.M.5
  • 218
    • 33644755929 scopus 로고    scopus 로고
    • Generation and characterization of telomere length maintenance in tankyrase 2-deficient mice
    • Chiang YJ, Nguyen ML, Gurunathan S, Kaminker P, Tessarollo L, et al. 2006. Generation and characterization of telomere length maintenance in tankyrase 2-deficient mice. Mol. Cell. Biol. 26:2037-43
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 2037-2043
    • Chiang, Y.J.1    Nguyen, M.L.2    Gurunathan, S.3    Kaminker, P.4    Tessarollo, L.5
  • 219
    • 50249090605 scopus 로고    scopus 로고
    • Tankyrase 1 and tankyrase 2 are essential but redundant for mouse embryonic development
    • Chiang YJ, Hsiao SJ, Yver D, Cushman SW, Tessarollo L, et al. 2008. Tankyrase 1 and tankyrase 2 are essential but redundant for mouse embryonic development. PLOS ONE 3:e2639
    • (2008) PLOS ONE , vol.3 , pp. e2639
    • Chiang, Y.J.1    Hsiao, S.J.2    Yver, D.3    Cushman, S.W.4    Tessarollo, L.5
  • 220
    • 84873410910 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 14 and its enzyme activity regulates TH2 differentiation and allergic airway disease
    • Mehrotra P, Hollenbeck A, Riley JP, Li F, Patel RJ, et al. 2013. Poly(ADP-ribose) polymerase 14 and its enzyme activity regulates TH2 differentiation and allergic airway disease. J. Allergy Clin. Immunol. 131:521-31
    • (2013) J. Allergy Clin. Immunol , vol.131 , pp. 521-531
    • Mehrotra, P.1    Hollenbeck, A.2    Riley, J.P.3    Li, F.4    Patel, R.J.5
  • 221
    • 33645243011 scopus 로고    scopus 로고
    • Selective potentiation of Stat-dependent gene expression by collaborator of Stat6 (CoaSt6), a transcriptional cofactor
    • Goenka S, Boothby M. 2006. Selective potentiation of Stat-dependent gene expression by collaborator of Stat6 (CoaSt6), a transcriptional cofactor. PNAS 103:4210-15
    • (2006) PNAS , vol.103 , pp. 4210-4215
    • Goenka, S.1    Boothby, M.2
  • 222
    • 33845894956 scopus 로고    scopus 로고
    • PDGF signaling specificity is mediated through multiple immediate early genes
    • Schmahl J, Raymond CS, Soriano P. 2007. PDGF signaling specificity is mediated through multiple immediate early genes. Nat. Genet. 39:52-60
    • (2007) Nat. Genet. , vol.39 , pp. 52-60
    • Schmahl, J.1    Raymond, C.S.2    Soriano, P.3
  • 223
    • 19944418213 scopus 로고    scopus 로고
    • Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality
    • Koh D, Lawler A, Poitras M, Sasaki M, Wattler S, et al. 2004. Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. PNAS 101:17699-704
    • (2004) PNAS , vol.101 , pp. 17699-17704
    • Koh, D.1    Lawler, A.2    Poitras, M.3    Sasaki, M.4    Wattler, S.5
  • 224
    • 3543031621 scopus 로고    scopus 로고
    • Depletion of the 110- kilodalton isoform of poly(ADP-ribose) glycohydrolase increases sensitivity to genotoxic and endotoxic stress in mice
    • Cortes U, Tong WM, Coyle DL, Meyer-Ficca ML, Meyer RG, et al. 2004. Depletion of the 110- kilodalton isoform of poly(ADP-ribose) glycohydrolase increases sensitivity to genotoxic and endotoxic stress in mice. Mol. Cell. Biol. 24:7163-78
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 7163-7178
    • Cortes, U.1    Tong, W.M.2    Coyle, D.L.3    Meyer-Ficca, M.L.4    Meyer, R.G.5
  • 225
    • 0026784182 scopus 로고
    • Poly(ADPR)polymerase expression and activity during proliferation and differentiation of rat astrocyte and neuronal cultures
    • Chabert M, Niedergang C, Hog F, Partisani M, Mandel P. 1992. Poly(ADPR)polymerase expression and activity during proliferation and differentiation of rat astrocyte and neuronal cultures. Biochim. Biophys. Acta 1136:196-202
    • (1992) Biochim. Biophys. Acta , vol.1136 , pp. 196-202
    • Chabert, M.1    Niedergang, C.2    Hog, F.3    Partisani, M.4    Mandel, P.5
  • 226
    • 10944253639 scopus 로고    scopus 로고
    • Activating the PARP-1 sensor component of the groucho/TLE1 corepressor complex mediates a CaM kinase IIδ-dependent neurogenic gene activation pathway
    • Ju B-G, Solum D, Song E, Lee K-J, Rose D, et al. 2004. Activating the PARP-1 sensor component of the groucho/TLE1 corepressor complex mediates a CaM kinase IIδ-dependent neurogenic gene activation pathway. Cell 119:815-29
    • (2004) Cell , vol.119 , pp. 815-829
    • Ju, B.-G.1    Solum, D.2    Song, E.3    Lee, K.-J.4    Rose, D.5
  • 227
    • 84881397528 scopus 로고    scopus 로고
    • PPARγ-induced PARylation promotes local DNA demethylation by production of 5-hydroxymethylcytosine
    • Fujiki K, Shinoda A, Kano F, Sato R, Shirahige K, Murata M. 2013. PPARγ-induced PARylation promotes local DNA demethylation by production of 5-hydroxymethylcytosine. Nat. Commun. 4:2262
    • (2013) Nat. Commun. , vol.4 , pp. 2262
    • Fujiki, K.1    Shinoda, A.2    Kano, F.3    Sato, R.4    Shirahige, K.5    Murata, M.6
  • 228
    • 84866277704 scopus 로고    scopus 로고
    • Hydrogen peroxide-induced poly(ADP-ribosyl)ation regulates osteogenic differentiation-associated cell death
    • Robaszkiewicz A, Erdélyi K, Kovács K, Kovács I, Bai P, et al. 2012. Hydrogen peroxide-induced poly(ADP-ribosyl)ation regulates osteogenic differentiation-associated cell death. Free Radic. Biol. Med. 53:1552-64
    • (2012) Free Radic. Biol. Med. , vol.53 , pp. 1552-1564
    • Robaszkiewicz, A.1    Erdélyi, K.2    Kovács, K.3    Kovács, I.4    Bai, P.5
  • 229
    • 78449261565 scopus 로고    scopus 로고
    • RANKL up-regulates brain-type creatine kinase via poly(ADP-ribose) polymerase 1 during osteoclastogenesis
    • Chen J, Sun Y, Mao X, Liu Q, Wu H, Chen Y. 2010. RANKL up-regulates brain-type creatine kinase via poly(ADP-ribose) polymerase 1 during osteoclastogenesis. J. Biol. Chem. 285:36315-21
    • (2010) J. Biol. Chem. , vol.285 , pp. 36315-36321
    • Chen, J.1    Sun, Y.2    Mao, X.3    Liu, Q.4    Wu, H.5    Chen, Y.6
  • 230
    • 84871271443 scopus 로고    scopus 로고
    • Regulation of myofibroblast differentiation by poly(ADP-ribose) polymerase 1
    • Hu B, Wu Z, Hergert P, Henke CA, Bitterman PB, Phan SH. 2013. Regulation of myofibroblast differentiation by poly(ADP-ribose) polymerase 1. Am. J. Pathol. 182:71-83
    • (2013) Am. J. Pathol , vol.182 , pp. 71-83
    • Hu, B.1    Wu, Z.2    Hergert, P.3    Henke, C.A.4    Bitterman, P.B.5    Phan, S.H.6
  • 231
    • 77954222814 scopus 로고    scopus 로고
    • Chromatin regulation by Brg1 underlies heart muscle development and disease
    • Hang CT, Yang J, Han P, Cheng HL, Shang C, et al. 2010. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466:62-67
    • (2010) Nature , vol.466 , pp. 62-67
    • Hang, C.T.1    Yang, J.2    Han, P.3    Cheng, H.L.4    Shang, C.5
  • 232
    • 84903634526 scopus 로고    scopus 로고
    • Role of poly(ADP-ribose) polymerases in male reproduction
    • Celik-Ozenci C, Tasatargil A. 2013. Role of poly(ADP-ribose) polymerases in male reproduction. Spermatogenesis 3:e24194
    • (2013) Spermatogenesis , vol.3 , pp. e24194
    • Celik-Ozenci, C.1    Tasatargil, A.2
  • 233
    • 84904045108 scopus 로고    scopus 로고
    • The expression pattern of PARP-1 and PARP-2 in the developing and adult mouse testis
    • Gungor-Ordueri NE, Sahin Z, Sahin P, Celik-Ozenci C. 2014. The expression pattern of PARP-1 and PARP-2 in the developing and adult mouse testis. Acta Histochem. 116:958-64
    • (2014) Acta HistoChem. , vol.116 , pp. 958-964
    • Gungor-Ordueri, N.E.1    Sahin, Z.2    Sahin, P.3    Celik-Ozenci, C.4
  • 234
    • 79956266186 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate topoisomerase IIβ (TOP2B) function during chromatin condensation in mouse spermiogenesis
    • Meyer-Ficca ML, Lonchar JD, Ihara M, Meistrich ML, Austin CA, Meyer RG. 2011. Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate topoisomerase IIβ (TOP2B) function during chromatin condensation in mouse spermiogenesis. Biol. Reprod. 84:900-9
    • (2011) Biol. Reprod , vol.84 , pp. 900-909
    • Meyer-Ficca, M.L.1    Lonchar, J.D.2    Ihara, M.3    Meistrich, M.L.4    Austin, C.A.5    Meyer, R.G.6
  • 235
    • 34250359929 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, macroH2A, and contributes to silencing of the inactive X chromosome
    • Nusinow D, Hernández-Muñoz I, Fazzio T, Shah G, Kraus W, Panning B. 2007. Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, macroH2A, and contributes to silencing of the inactive X chromosome. J. Biol. Chem. 282:12851-59
    • (2007) J. Biol. Chem. , vol.282 , pp. 12851-12859
    • Nusinow, D.1    Hernández-Muñoz, I.2    Fazzio, T.3    Shah, G.4    Kraus, W.5    Panning, B.6
  • 236
    • 84876798514 scopus 로고    scopus 로고
    • Poly(ADP-ribosylation) regulates chromatin organization through histoneH3modification andDNAmethylation of the first cell cycle of mouse embryos
    • Osada T, Ryden AM, Masutani M. 2013. Poly(ADP-ribosylation) regulates chromatin organization through histoneH3modification andDNAmethylation of the first cell cycle of mouse embryos. Biochem. Biophys. Res. Commun. 434:15-21
    • (2013) Biochem. Biophys. Res. Commun. , vol.434 , pp. 15-21
    • Osada, T.1    Ryden, A.M.2    Masutani, M.3
  • 238
    • 33747195353 scopus 로고    scopus 로고
    • Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
    • Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-76
    • (2006) Cell , vol.126 , pp. 663-676
    • Takahashi, K.1    Yamanaka, S.2
  • 239
    • 84874515621 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 1 regulates nuclear reprogramming and promotes iPSC generation without c-Myc
    • Chiou SH, Jiang BH, Yu YL, Chou SJ, Tsai PH, et al. 2013. Poly(ADP-ribose) polymerase 1 regulates nuclear reprogramming and promotes iPSC generation without c-Myc. J. Exp. Med. 210:85-98
    • (2013) J. Exp. Med. , vol.210 , pp. 85-98
    • Chiou, S.H.1    Jiang, B.H.2    Yu, Y.L.3    Chou, S.J.4    Tsai, P.H.5
  • 240
    • 84887865391 scopus 로고    scopus 로고
    • Artd1/Parp1 regulates reprogramming by transcriptional regulation of Fgf4 via Sox2 ADP-ribosylation
    • Weber FA, Bartolomei G, Hottiger MO, Cinelli P. 2013. Artd1/Parp1 regulates reprogramming by transcriptional regulation of Fgf4 via Sox2 ADP-ribosylation. Stem Cells 31:2364-73
    • (2013) Stem Cells , vol.31 , pp. 2364-2373
    • Weber, F.A.1    Bartolomei, G.2    Hottiger, M.O.3    Cinelli, P.4
  • 241
    • 84865486793 scopus 로고    scopus 로고
    • Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2
    • Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, et al. 2012. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488:652-55
    • (2012) Nature , vol.488 , pp. 652-655
    • Doege, C.A.1    Inoue, K.2    Yamashita, T.3    Rhee, D.B.4    Travis, S.5
  • 242
    • 84455188711 scopus 로고    scopus 로고
    • +, a circadian metabolite with an epigenetic twist
    • +, a circadian metabolite with an epigenetic twist. Endocrinology 153:1-5
    • (2012) Endocrinology , vol.153 , pp. 1-5
    • Sassone-Corsi, P.1
  • 243
    • 77956627087 scopus 로고    scopus 로고
    • Poly(ADPribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
    • Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U. 2010. Poly(ADPribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142:943-53
    • (2010) Cell , vol.142 , pp. 943-953
    • Asher, G.1    Reinke, H.2    Altmeyer, M.3    Gutierrez-Arcelus, M.4    Hottiger, M.O.5    Schibler, U.6
  • 244
    • 84875755814 scopus 로고    scopus 로고
    • Influence of metabolism on epigenetics and disease
    • Kaelin WG Jr, McKnight SL. 2013. Influence of metabolism on epigenetics and disease. Cell 153:56-69
    • (2013) Cell , vol.153 , pp. 56-69
    • Kaelin, W.G.1    McKnight, S.L.2
  • 245
    • 78449259404 scopus 로고    scopus 로고
    • Method for the synthesis of Mono-ADP-ribose conjugated peptides
    • Moyle P, Muir T. 2010. Method for the synthesis of Mono-ADP-ribose conjugated peptides. J. Am. Chem. Soc. 132:15878-80
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 15878-15880
    • Moyle, P.1    Muir, T.2
  • 247
    • 84906101398 scopus 로고    scopus 로고
    • Chain-terminating and clickable NAD+ analogues for labeling the target proteins of ADP-ribosyltransferases
    • Wang Y, Rosner D, Grzywa M, Marx A. 2014. Chain-terminating and clickable NAD+ analogues for labeling the target proteins of ADP-ribosyltransferases. Angew. Chem. Int. Ed. Engl. 53:8159-62
    • (2014) Angew. Chem. Int. Ed. Engl , vol.53 , pp. 8159-8162
    • Wang, Y.1    Rosner, D.2    Grzywa, M.3    Marx, A.4
  • 248
    • 84883743073 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma
    • Barbarulo A, Iansante V, Chaidos A, Naresh K, Rahemtulla A, et al. 2013. Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma. Oncogene 32:4231-42
    • (2013) Oncogene , vol.32 , pp. 4231-4242
    • Barbarulo, A.1    Iansante, V.2    Chaidos, A.3    Naresh, K.4    Rahemtulla, A.5
  • 249
    • 84903315080 scopus 로고    scopus 로고
    • DTX3Land ARTD9 inhibit IRF1 expression andmediate in cooperation with ARTD8 survival and proliferation ofmetastatic prostate cancer cells
    • Bachmann SB, Frommel SC, Camicia R, Winkler HC, Santoro R, Hassa PO. 2014. DTX3Land ARTD9 inhibit IRF1 expression andmediate in cooperation with ARTD8 survival and proliferation ofmetastatic prostate cancer cells. Mol. Cancer 13:125
    • (2014) Mol. Cancer , vol.13 , pp. 125
    • Bachmann, S.B.1    Frommel, S.C.2    Camicia, R.3    Winkler, H.C.4    Santoro, R.5    Hassa, P.O.6
  • 250
    • 84906217436 scopus 로고    scopus 로고
    • Histone deacetylase inhibitor treatment induces 'BRCAness' and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells
    • Ha K, Fiskus W, Choi DS, Bhaskara S, Cerchietti L, et al. 2014. Histone deacetylase inhibitor treatment induces 'BRCAness' and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells. Oncotarget 30:5637-50
    • (2014) Oncotarget , vol.30 , pp. 5637-5650
    • Ha, K.1    Fiskus, W.2    Choi, D.S.3    Bhaskara, S.4    Cerchietti, L.5
  • 251
    • 84919330009 scopus 로고    scopus 로고
    • Synergistic loss of prostate cancer cell viability by co-inhibition of HDAC and PARP
    • Chao OS, Goodman OB Jr. 2014. Synergistic loss of prostate cancer cell viability by co-inhibition of HDAC and PARP. Mol. Cancer Res. 12:1755-66
    • (2014) Mol. Cancer Res. , vol.12 , pp. 1755-1766
    • Chao, O.S.1    Goodman, O.B.2
  • 252
    • 0011356022 scopus 로고
    • Novel enzyme from rat liver that cleaves an ADP-ribosyl histone linkage
    • Okayama H, Honda M, Hayaishi O. 1978. Novel enzyme from rat liver that cleaves an ADP-ribosyl histone linkage. PNAS 75:2254-57
    • (1978) PNAS , vol.75 , pp. 2254-2257
    • Okayama, H.1    Honda, M.2    Hayaishi, O.3
  • 253
    • 0021339860 scopus 로고
    • ADP-ribosyl protein lyase. Purification, properties, and identification of the product
    • Oka J, Ueda K, Hayaishi O, Komura H, Nakanishi K. 1984. ADP-ribosyl protein lyase. Purification, properties, and identification of the product. J. Biol. Chem. 259:986-95
    • (1984) J. Biol. Chem. , vol.259 , pp. 986-995
    • Oka, J.1    Ueda, K.2    Hayaishi, O.3    Komura, H.4    Nakanishi, K.5
  • 254
    • 84886717428 scopus 로고    scopus 로고
    • Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes
    • Canto C, Sauve AA, Bai P. 2013. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol. Aspects Med. 34:1168-201
    • (2013) Mol. Aspects Med. , vol.34 , pp. 1168-1201
    • Canto, C.1    Sauve, A.A.2    Bai, P.3
  • 255
    • 79953752384 scopus 로고    scopus 로고
    • PARP-1 inhibition increasesmitochondrial metabolism through SIRT1 activation
    • Bai P, Canto C, Oudart H, Brunyánszki A, Cen Y, et al. 2011. PARP-1 inhibition increasesmitochondrial metabolism through SIRT1 activation. Cell Metab. 13:461-68
    • (2011) Cell Metab , vol.13 , pp. 461-468
    • Bai, P.1    Canto, C.2    Oudart, H.3    Brunyánszki, A.4    Cen, Y.5
  • 256
    • 84891860991 scopus 로고    scopus 로고
    • The many faces of sirtuins: Coupling of NAD metabolism, sirtuins and lifespan
    • Verdin E. 2014. The many faces of sirtuins: coupling of NAD metabolism, sirtuins and lifespan. Nat. Med. 20:25-27
    • (2014) Nat. Med. , vol.20 , pp. 25-27
    • Verdin, E.1
  • 257
    • 33744475759 scopus 로고    scopus 로고
    • Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage
    • Kolthur-Seetharam U, Dantzer F, McBurney MW, de Murcia G, Sassone-Corsi P. 2006. Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle 5:873-77
    • (2006) Cell Cycle , vol.5 , pp. 873-877
    • Kolthur-Seetharam, U.1    Dantzer, F.2    McBurney, M.W.3    De Murcia, G.4    Sassone-Corsi, P.5
  • 258
    • 67651210858 scopus 로고    scopus 로고
    • SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1
    • Rajamohan SB, Pillai VB, Gupta M, Sundaresan NR, Birukov KG, et al. 2009. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol. Cell. Biol. 29:4116-29
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 4116-4129
    • Rajamohan, S.B.1    Pillai, V.B.2    Gupta, M.3    Sundaresan, N.R.4    Birukov, K.G.5
  • 259
    • 48949084229 scopus 로고    scopus 로고
    • Importin α binding and nuclear localization of PARP-2 is dependent on lysine 36, which is located within a predicted classical NLS
    • Haenni SS, Altmeyer M, Hassa PO, Valovka T, Fey M, Hottiger MO. 2008. Importin α binding and nuclear localization of PARP-2 is dependent on lysine 36, which is located within a predicted classical NLS. BMC Cell Biol. 9:39
    • (2008) BMC Cell Biol. , vol.9 , pp. 39
    • Haenni, S.S.1    Altmeyer, M.2    Hassa, P.O.3    Valovka, T.4    Fey, M.5    Hottiger, M.O.6
  • 260
    • 12444276626 scopus 로고    scopus 로고
    • PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression
    • Augustin A, Spenlehauer C, Dumond H, Menissier de Murcia J, Piel M, et al. 2003. PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression. J. Cell Sci. 116:1551-62
    • (2003) J. Cell Sci. , vol.116 , pp. 1551-1562
    • Augustin, A.1    Spenlehauer, C.2    Dumond, H.3    De Murcia Menissier, J.4    Piel, M.5
  • 262
    • 0032721132 scopus 로고    scopus 로고
    • Cell cycle dependent localization of the telomeric PARP, tankyrase, to nuclear pore complexes and centrosomes
    • Smith S, de Lange T. 1999. Cell cycle dependent localization of the telomeric PARP, tankyrase, to nuclear pore complexes and centrosomes. J. Cell Sci. 112:3649-56
    • (1999) J. Cell Sci. , vol.112 , pp. 3649-3656
    • Smith, S.1    De Lange, T.2
  • 263
    • 85047693635 scopus 로고    scopus 로고
    • Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function
    • Chang P, Coughlin M, MitchisonTJ. 2005. Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat. Cell Biol. 7:1133-39
    • (2005) Nat. Cell Biol. , vol.7 , pp. 1133-1139
    • Chang, P.1    Coughlin, M.2    Mitchison, T.J.3
  • 264
    • 79955957616 scopus 로고    scopus 로고
    • Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm
    • Leung AK, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P. 2011. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol. Cell 42:489-99
    • (2011) Mol. Cell , vol.42 , pp. 489-499
    • Leung, A.K.1    Vyas, S.2    Rood, J.E.3    Bhutkar, A.4    Sharp, P.A.5    Chang, P.6
  • 265
    • 0035929591 scopus 로고    scopus 로고
    • TANK2, a new TRF1- associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression
    • Kaminker PG, Kim SH, Taylor RD, Zebarjadian Y, Funk WD, et al. 2001. TANK2, a new TRF1- associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression. J. Biol. Chem. 276:35891-99
    • (2001) J. Biol. Chem. , vol.276 , pp. 35891-35899
    • Kaminker, P.G.1    Kim, S.H.2    Taylor, R.D.3    Zebarjadian, Y.4    Funk, W.D.5
  • 266
    • 20144389675 scopus 로고    scopus 로고
    • PARP-10, a novel Myc-interacting protein with poly(ADP-ribose) polymerase activity, inhibits transformation
    • Yu M, Schreek S, Cerni C, Schamberger C, Lesniewicz K, et al. 2005. PARP-10, a novel Myc-interacting protein with poly(ADP-ribose) polymerase activity, inhibits transformation. Oncogene 24:1982-93
    • (2005) Oncogene , vol.24 , pp. 1982-1993
    • Yu, M.1    Schreek, S.2    Cerni, C.3    Schamberger, C.4    Lesniewicz, K.5
  • 267
    • 84870512471 scopus 로고    scopus 로고
    • Dynamic subcellular localization of the mono-ADP-ribosyltransferase ARTD10 and interaction with the ubiquitin receptor p62
    • Kleine H, Herrmann A, Lamark T, Forst AH, Verheugd P, et al. 2012. Dynamic subcellular localization of the mono-ADP-ribosyltransferase ARTD10 and interaction with the ubiquitin receptor p62. Cell Commun. Signal. 10:28
    • (2012) Cell Commun. Signal , vol.10 , pp. 28
    • Kleine, H.1    Herrmann, A.2    Lamark, T.3    Forst, A.H.4    Verheugd, P.5
  • 268
    • 84862233980 scopus 로고    scopus 로고
    • PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ss1
    • Di Paola S, Micaroni M, Di Tullio G, Buccione R, Di Girolamo M. 2012. PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ss1. PLOS ONE 7:e37352
    • (2012) PLOS ONE , vol.7 , pp. e37352
    • Di Paola, S.1    Micaroni, M.2    Di Tullio, G.3    Buccione, R.4    Di Girolamo, M.5
  • 269
    • 84869094697 scopus 로고    scopus 로고
    • PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1α-mediated unfolded protein response
    • Jwa M, Chang P. 2012. PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1α-mediated unfolded protein response. Nat. Cell Biol. 14:1223-30
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1223-1230
    • Jwa, M.1    Chang, P.2
  • 270
    • 0034669054 scopus 로고    scopus 로고
    • Structure and mechanism of activity of the cyclic phosphodiesterase of Appr>p, a product of the tRNA splicing reaction
    • Hofmann A, Zdanov A, Genschik P, Ruvinov S, Filipowicz W, Wlodawer A. 2000. Structure and mechanism of activity of the cyclic phosphodiesterase of Appr>p, a product of the tRNA splicing reaction. EMBO J. 19:6207-17
    • (2000) EMBO J. , vol.19 , pp. 6207-6217
    • Hofmann, A.1    Zdanov, A.2    Genschik, P.3    Ruvinov, S.4    Filipowicz, W.5    Wlodawer, A.6
  • 271
    • 11144324460 scopus 로고    scopus 로고
    • Structure-function analysis of the yeastNAD+-dependent tRNA 2′-phosphotransferase Tpt1
    • Sawaya R, Schwer B, Shuman S. 2005. Structure-function analysis of the yeastNAD+-dependent tRNA 2′-phosphotransferase Tpt1. RNA 11:107-13
    • (2005) RNA , vol.11 , pp. 107-113
    • Sawaya, R.1    Schwer, B.2    Shuman, S.3
  • 272
    • 0742323811 scopus 로고    scopus 로고
    • Alteration of poly(ADPribose) glycohydrolase nucleocytoplasmic shuttling characteristics upon cleavage by apoptotic proteases
    • Bonicalzi ME, Vodenicharov M, Coulombe M, Gagne JP, Poirier GG. 2003. Alteration of poly(ADPribose) glycohydrolase nucleocytoplasmic shuttling characteristics upon cleavage by apoptotic proteases. Biol. Cell 95:635-44
    • (2003) Biol. Cell , vol.95 , pp. 635-644
    • Bonicalzi, M.E.1    Vodenicharov, M.2    Coulombe, M.3    Gagne, J.P.4    Poirier, G.G.5
  • 274
    • 2942707644 scopus 로고    scopus 로고
    • Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments
    • Meyer-Ficca ML, Meyer RG, Coyle DL, Jacobson EL, Jacobson MK. 2004. Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp. Cell Res. 297:521-32
    • (2004) Exp. Cell Res. , vol.297 , pp. 521-532
    • Meyer-Ficca, M.L.1    Meyer, R.G.2    Coyle, D.L.3    Jacobson, E.L.4    Jacobson, M.K.5
  • 275
    • 34547153717 scopus 로고    scopus 로고
    • Two small enzyme isoforms mediate mammalian mitochondrial poly(ADP-ribose) glycohydrolase (PARG) activity
    • Meyer RG, Meyer-Ficca ML, Whatcott CJ, Jacobson EL, Jacobson MK. 2007. Two small enzyme isoforms mediate mammalian mitochondrial poly(ADP-ribose) glycohydrolase (PARG) activity. Exp. Cell Res. 313:2920-36
    • (2007) Exp. Cell Res. , vol.313 , pp. 2920-2936
    • Meyer, R.G.1    Meyer-Ficca, M.L.2    Whatcott, C.J.3    Jacobson, E.L.4    Jacobson, M.K.5
  • 276
    • 37849013404 scopus 로고    scopus 로고
    • Functional localization of two poly(ADP-ribose)- degrading enzymes to the mitochondrial matrix
    • Niere M, Kernstock S, Koch-Nolte F, Ziegler M. 2008. Functional localization of two poly(ADP-ribose)- degrading enzymes to the mitochondrial matrix. Mol. Cell. Biol. 28:814-24
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 814-824
    • Niere, M.1    Kernstock, S.2    Koch-Nolte, F.3    Ziegler, M.4
  • 277
    • 79953319238 scopus 로고    scopus 로고
    • LRP16 integrates into NF-κB transcriptional complex and is required for its functional activation
    • Wu Z, Li Y, Li X, Ti D, Zhao Y, et al. 2011. LRP16 integrates into NF-κB transcriptional complex and is required for its functional activation. PLOS ONE 6:e18157
    • (2011) PLOS ONE , vol.6 , pp. e18157
    • Wu, Z.1    Li, Y.2    Li, X.3    Ti, D.4    Zhao, Y.5
  • 278
    • 80052153015 scopus 로고    scopus 로고
    • Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage
    • Kang HC, Lee YI, Shin JH, Andrabi SA, Chi Z, et al. 2011. Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. PNAS 108:14103-8
    • (2011) PNAS , vol.108 , pp. 14103-14108
    • Kang, H.C.1    Lee, Y.I.2    Shin, J.H.3    Andrabi, S.A.4    Chi, Z.5
  • 279
    • 84861231399 scopus 로고    scopus 로고
    • The diverse roles and clinical relevance of PARPs in DNA damage repair: Current state of the art
    • de Vos M, Schreiber V, Dantzer F. 2012. The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem. Pharmacol. 84:137-46
    • (2012) Biochem. Pharmacol , vol.84 , pp. 137-146
    • De Vos, M.1    Schreiber, V.2    Dantzer, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.