메뉴 건너뛰기




Volumn 15, Issue 5, 2015, Pages 11953-11971

User activity recognition in smart homes using pattern clustering applied to temporal ANN algorithm

Author keywords

Activity recognition; Allen s temporal relations; Anomaly prediction; Neural network; Pattern clustering; Smart home

Indexed keywords

ALGORITHMS; AUTOMATION; CLUSTER ANALYSIS; COMPLEX NETWORKS; DATA MINING; FORECASTING; INTELLIGENT BUILDINGS; INTERNET OF THINGS; NEURAL NETWORKS; PATTERN RECOGNITION; UNSUPERVISED LEARNING;

EID: 84930662154     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s150511953     Document Type: Article
Times cited : (109)

References (26)
  • 1
    • 84927712838 scopus 로고    scopus 로고
    • An Unsupervised Pattern Clustering Approach for Identifying Abnormal User Behaviors in Smart Homes
    • Sukanya, P.; Gayathri, K.S. An Unsupervised Pattern Clustering Approach for Identifying Abnormal User Behaviors in Smart Homes. Int. J. Comput. Sci. Netw. 2013, 3, 115–122.
    • (2013) Int. J. Comput. Sci. Netw , vol.3 , pp. 115-122
    • Sukanya, P.1    Gayathri, K.S.2
  • 6
    • 0036649290 scopus 로고    scopus 로고
    • Unsupervised Learning with Mixed Numeric and Nominal Data
    • Li, C.; Biswas, G. Unsupervised Learning with Mixed Numeric and Nominal Data. IEEE Trans. Knowl. Data Eng. 2002, 4, 673–690.
    • (2002) IEEE Trans. Knowl. Data Eng , vol.4 , pp. 673-690
    • Li, C.1    Biswas, G.2
  • 9
    • 0035692346 scopus 로고    scopus 로고
    • Assistive Technology in Elderly Care
    • Miskelly, F.G. Assistive Technology in Elderly Care. Age Ageing 2001, 6, 455–458.
    • (2001) Age Ageing , vol.6 , pp. 455-458
    • Miskelly, F.G.1
  • 10
    • 84930644422 scopus 로고    scopus 로고
    • Building Classification Models: ID3 and C4. 5, (accessed on 21 May 2015)
    • Building Classification Models: ID3 and C4. 5. Available online: http://www.cis.temple.edu/~ingargio/ci587/readings/id3-c45.html (accessed on 21 May 2015).
  • 11
    • 84930681507 scopus 로고    scopus 로고
    • Weka 3: Data Mining Software in Java, (accessed on 21 May 2015)
    • Weka 3: Data Mining Software in Java. Available online: http://www.cs.waikato.ac.nz/ml/weka/ (accessed on 21 May 2015).
  • 13
    • 84858239192 scopus 로고    scopus 로고
    • Learning Setting-Generalized Activity Models for Smart Spaces
    • Cook, D. Learning Setting-Generalized Activity Models for Smart Spaces. IEEE Intell. Syst. 2012, 1, 32–38.
    • (2012) IEEE Intell. Syst , vol.1 , pp. 32-38
    • Cook, D.1
  • 14
    • 0039253846 scopus 로고    scopus 로고
    • Mining Frequent Patterns without Candidate Generation
    • Dalls, TX, USA, 15–18 May, ACM Press: New York, NY, USA
    • Han, J.; Pei, H.; Yin, Y. Mining Frequent Patterns without Candidate Generation. In Proceedings of the Conference on the Management of Data, Dalls, TX, USA, 15–18 May 2000; ACM Press: New York, NY, USA, pp. 1–12.
    • (2000) Proceedings of the Conference on the Management of Data , pp. 1-12
    • Han, J.1    Pei, H.2    Yin, Y.3
  • 16
    • 0141764033 scopus 로고    scopus 로고
    • Tree Projection Algorithm for Generation of Frequent Itemsets
    • Agarwal, R.C.; Aggarwal, C.C.; Prasad, V.V.V. A Tree Projection Algorithm for Generation of Frequent Itemsets. J. Parallel Distrib. Comput. 2001, 3, 350–371.
    • (2001) J. Parallel Distrib. Comput , vol.3 , pp. 350-371
    • Agarwal, R.C.1    Aggarwal, C.C.2    Prasad, V.3
  • 17
    • 80054856786 scopus 로고    scopus 로고
    • Implementation of Web Usage Mining Using APRIORI and FP Growth Algorithms
    • Kumar, B.S.; Rukmani, K.V. Implementation of Web Usage Mining Using APRIORI and FP Growth Algorithms. Int. J. Adv. Netw. Appl. 2010, 6, 400–404.
    • (2010) Int. J. Adv. Netw. Appl , vol.6 , pp. 400-404
    • Kumar, B.S.1    Rukmani, K.V.2
  • 21
    • 77953548893 scopus 로고    scopus 로고
    • Keeping Things Simple: Finding Frequent Item Sets by Recursive Elimination
    • Chicago, IL, USA, 21–24 August, ACM Press: New York, NY, USA
    • Borgelt, C. Keeping Things Simple: Finding Frequent Item Sets by Recursive Elimination. In Proceedings of Workshop Open Source Data Mining Software, Chicago, IL, USA, 21–24 August 2005; ACM Press: New York, NY, USA, pp. 66–70.
    • (2005) In Proceedings of Workshop Open Source Data Mining Software , pp. 66-70
    • Borgelt, C.1
  • 22
    • 84930669595 scopus 로고    scopus 로고
    • Collections of Datasets, (accessed on 21 May 2015)
    • Collections of Datasets. Available online: http://www.cs.waikato.ac.nz/ml/weka/datasets.html (accessed on 21 May 2015).
  • 25
    • 33744584654 scopus 로고
    • Induction of Decision Trees
    • Springer US: New York, NY, USA
    • Quinlan, J.R. Induction of Decision Trees. In Machine Learning; Springer US: New York, NY, USA, 1986; pp. 81–106.
    • (1986) In Machine Learning , pp. 81-106
    • Quinlan, J.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.