메뉴 건너뛰기




Volumn 47, Issue 4, 2015, Pages

A survey of multiobjective evolutionary clustering

Author keywords

Clustering; Evolutionary algorithms; Multiobjective optimization; Pareto optimality

Indexed keywords

ALGORITHMS; BIOINFORMATICS; CLUSTER ANALYSIS; DATA MINING; EVOLUTIONARY ALGORITHMS; IMAGE SEGMENTATION; MULTIOBJECTIVE OPTIMIZATION; OPTIMIZATION; PARETO PRINCIPLE; SURVEYS;

EID: 84930656510     PISSN: 03600300     EISSN: 15577341     Source Type: Journal    
DOI: 10.1145/2742642     Document Type: Article
Times cited : (143)

References (123)
  • 2
    • 53349169258 scopus 로고    scopus 로고
    • Multiobjective particle swarm algorithm with fuzzy clustering for electrical power dispatch
    • S. Agrawal, B. K. Panigrahi, and M. K. Tiwari. 2008. Multiobjective particle swarm algorithm with fuzzy clustering for electrical power dispatch. IEEE Transactions on Evolutionary Computation 12, 5, 529-541.
    • (2008) IEEE Transactions on Evolutionary Computation , vol.12 , Issue.5 , pp. 529-541
    • Agrawal, S.1    Panigrahi, B.K.2    Tiwari, M.K.3
  • 6
    • 36448965202 scopus 로고    scopus 로고
    • An improved algorithm for clustering gene expression data
    • S. Bandyopadhyay, A. Mukhopadhyay, and U. Maulik. 2007b. An improved algorithm for clustering gene expression data. Bioinformatics 23, 21, 2859-2865.
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2859-2865
    • Bandyopadhyay, S.1    Mukhopadhyay, A.2    Maulik, U.3
  • 10
    • 33947669974 scopus 로고    scopus 로고
    • SMS-EMOA: Multiobjective selection based on dominated hypervolume
    • N. Beume, B. Naujoks, and M. Emmerich. 2007. SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181, 3, 1653-1669.
    • (2007) European Journal of Operational Research , vol.181 , Issue.3 , pp. 1653-1669
    • Beume, N.1    Naujoks, B.2    Emmerich, M.3
  • 15
    • 78649462741 scopus 로고    scopus 로고
    • Inducing multi-objective clustering ensembles with genetic programming
    • A. L. V. Coelho, E. Fernandes, and K. Faceli. 2010. Inducing multi-objective clustering ensembles with genetic programming. Neurocomputing 74, 1-3, 494-498.
    • (2010) Neurocomputing , vol.74 , Issue.1-3 , pp. 494-498
    • Coelho, A.L.V.1    Fernandes, E.2    Faceli, K.3
  • 16
    • 33644978280 scopus 로고    scopus 로고
    • Evolutionary multiobjective optimization: A historical view of the field
    • C. A. Coello Coello. 2006. Evolutionary multiobjective optimization: A historical view of the field. IEEE Computational Intelligence Magazine 1, 1, 28-36.
    • (2006) IEEE Computational Intelligence Magazine , vol.1 , Issue.1 , pp. 28-36
    • Coello Coello, C.A.1
  • 18
    • 85133775397 scopus 로고    scopus 로고
    • A comprehensive survey of evolutionary-based multiobjective optimization techniques
    • C. A. Coello Coello. 1999. A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowledge and Information Systems 1, 3, 129-156.
    • (1999) Knowledge and Information Systems , vol.1 , Issue.3 , pp. 129-156
    • Coello Coello, C.A.1
  • 19
    • 0005871804 scopus 로고    scopus 로고
    • PESA-II: Region-based selection in evolutionary multiobjective optimization
    • L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke Eds.. Morgan Kaufmann, San Francisco, CA
    • D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates. 2001. PESA-II: Region-based selection in evolutionary multiobjective optimization. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke (Eds.). Morgan Kaufmann, San Francisco, CA, 283-290.
    • (2001) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001) , pp. 283-290
    • Corne, D.W.1    Jerram, N.R.2    Knowles, J.D.3    Oates, M.J.4
  • 26
    • 77952879182 scopus 로고    scopus 로고
    • Multiobjective evolutionary clustering of Web user sessions: A case study in Web page recommendation
    • G. N. Demir, A. S. Uyar, and S. G. Ögüdücü. 2010. Multiobjective evolutionary clustering of Web user sessions: A case study in Web page recommendation. Soft Computing 14, 6, 579-597.
    • (2010) Soft Computing , vol.14 , Issue.6 , pp. 579-597
    • Demir, G.N.1    Uyar, A.S.2    Ögüdücü, S.G.3
  • 27
    • 26944486168 scopus 로고    scopus 로고
    • Alternative clustering by utilizing multi-objective genetic algorithm with linked-list based chromosome encoding
    • Springer
    • J. Du, E. E. Korkmaz, R. Alhajj, and K. Barker. 2005. Alternative clustering by utilizing multi-objective genetic algorithm with linked-list based chromosome encoding. In MLDM (Lecture Notes in Computer Science), Vol. 3587. Springer, 346-355.
    • (2005) MLDM (Lecture Notes in Computer Science) , vol.3587 , pp. 346-355
    • Du, J.1    Korkmaz, E.E.2    Alhajj, R.3    Barker, K.4
  • 28
    • 84941155240 scopus 로고
    • Well separated clusters and optimal fuzzy partitions
    • 1974
    • J. C. Dunn. 1974. Well separated clusters and optimal fuzzy partitions. J. Cyberns. 4(1974), 95-104.
    • (1974) J. Cyberns , vol.4 , pp. 95-104
    • Dunn, J.C.1
  • 31
    • 0347499408 scopus 로고    scopus 로고
    • Gene expression programming: A new adaptive algorithm for solving problems
    • C. Ferreira. 2001. Gene expression programming: A new adaptive algorithm for solving problems. Complex Systems 13, 2, 87-129.
    • (2001) Complex Systems , vol.13 , Issue.2 , pp. 87-129
    • Ferreira, C.1
  • 34
    • 33645030729 scopus 로고    scopus 로고
    • A critical review of multi-objective optimization in data mining: A position paper
    • A. A. Freitas. 2004. A critical review of multi-objective optimization in data mining: A position paper. SIGKDD Exploration Newsletter 6, 2, 77-86.
    • (2004) SIGKDD Exploration Newsletter , vol.6 , Issue.2 , pp. 77-86
    • Freitas, A.A.1
  • 35
    • 0037057374 scopus 로고    scopus 로고
    • Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering
    • A. P. Gasch and M. B. Eisen. 2002. Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biology 3, 11, 0059.1-0059.22.
    • (2002) Genome Biology , vol.3 , Issue.11 , pp. 00591-005922
    • Gasch, A.P.1    Eisen, M.B.2
  • 39
    • 27644485640 scopus 로고    scopus 로고
    • A new convergence proof of fuzzy c-means
    • L. Groll and J. Jakel. 2005. A new convergence proof of fuzzy c-means. IEEE Transactions on Fuzzy Systems 13, 5, 717-720.
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.5 , pp. 717-720
    • Groll, L.1    Jakel, J.2
  • 46
    • 33845331424 scopus 로고    scopus 로고
    • Multiobjective clustering and cluster validation
    • Springer
    • J. Handl and J. D. Knowles. 2006. Multiobjective clustering and cluster validation. Computational Intelligence, Vol. 16. Springer, 21-47.
    • (2006) Computational Intelligence , vol.16 , pp. 21-47
    • Handl, J.1    Knowles, J.D.2
  • 48
    • 84866382959 scopus 로고    scopus 로고
    • Clustering criteria in multiobjective data clustering
    • C. A. Coello Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, and M. Pavone Eds.. Lecture Notes in Computer Science, Springer, Berlin
    • J. Handl and J. D. Knowles. 2012. Clustering criteria in multiobjective data clustering. In Parallel Problem Solving from Nature - PPSN XII, C. A. Coello Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, and M. Pavone (Eds.). Lecture Notes in Computer Science, Vol. 7492. Springer, Berlin, 32-41.
    • (2012) Parallel Problem Solving from Nature - PPSN XII , vol.7492 , pp. 32-41
    • Handl, J.1    Knowles, J.D.2
  • 49
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • J. Handl, J. D. Knowles, and D. B. Kell. 2005. Computational cluster validation in post-genomic data analysis. Bioinformatics 21, 15, 3201-3212.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3201-3212
    • Handl, J.1    Knowles, J.D.2    Kell, D.B.3
  • 53
    • 22944438731 scopus 로고    scopus 로고
    • Solving rotated multi-objective optimization problems using differential evolution
    • G. I. Webb and X. Yu Eds., Springer
    • A. W. Iorio and X. Li. 2004. Solving rotated multi-objective optimization problems using differential evolution. In Australian Conference on Artificial Intelligence (Lecture Notes in Computer Science), G. I. Webb and X. Yu (Eds.), Vol. 3339. Springer, 861-872.
    • (2004) Australian Conference on Artificial Intelligence (Lecture Notes in Computer Science) , vol.3339 , pp. 861-872
    • Iorio, A.W.1    Li, X.2
  • 57
    • 80052971902 scopus 로고    scopus 로고
    • A novel multi-objective genetic algorithm for clustering
    • H. Yin, W. Wang, and V. Rayward-Smith Eds.. Lecture Notes in Computer Science, Springer, Berlin
    • O. Kirkland, V. Rayward-Smith, and B. De La Iglesia. 2011. A novel multi-objective genetic algorithm for clustering. In Intelligent Data Engineering and Automated Learning (IDEAL'11), H. Yin, W. Wang, and V. Rayward-Smith (Eds.). Lecture Notes in Computer Science, Vol. 6936. Springer, Berlin, 317-326.
    • (2011) Intelligent Data Engineering and Automated Learning (IDEAL'11) , vol.6936 , pp. 317-326
    • Kirkland, O.1    Rayward-Smith, V.2    De La Iglesia, B.3
  • 58
    • 84901404865 scopus 로고    scopus 로고
    • The Pareto archived evolution strategy: A new baseline algorithm for Pareto multiobjective optimisation
    • IEEE Press, Piscataway, NJ
    • J. D. Knowles and D. W. Corne. 1999. The Pareto archived evolution strategy: A new baseline algorithm for Pareto multiobjective optimisation. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE Press, Piscataway, NJ, 98-105.
    • (1999) Proceedings of the IEEE Congress on Evolutionary Computation , pp. 98-105
    • Knowles, J.D.1    Corne, D.W.2
  • 61
    • 77955891214 scopus 로고    scopus 로고
    • A multiobjective immune clustering ensemble technique applied to unsupervised SAR image segmentation
    • R. Liu, W. Zhang, L. Jiao, and F. Liu. 2010. A multiobjective immune clustering ensemble technique applied to unsupervised SAR image segmentation. In CIVR. 158-165.
    • (2010) CIVR , pp. 158-165
    • Liu, R.1    Zhang, W.2    Jiao, L.3    Liu, F.4
  • 62
    • 23844479658 scopus 로고    scopus 로고
    • Integrating multi-objective genetic algorithm and validity analysis for locating and ranking alternative clustering
    • Y. Liu, T. Özyer, R. Alhajj, and K. Barker. 2005. Integrating multi-objective genetic algorithm and validity analysis for locating and ranking alternative clustering. Informatica 29, 33-40.
    • (2005) Informatica , vol.29 , pp. 33-40
    • Liu, Y.1    Özyer, T.2    Alhajj, R.3    Barker, K.4
  • 64
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm based clustering technique
    • U. Maulik and S. Bandyopadhyay. 2000. Genetic algorithm based clustering technique. Pattern Recognition 33, 1455-1465.
    • (2000) Pattern Recognition , vol.33 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 67
    • 62949240361 scopus 로고    scopus 로고
    • Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes
    • U. Maulik, A. Mukhopadhyay, and S. Bandyopadhyay. 2009. Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes. BMC Bioinformatics 10, n27.
    • (2009) BMC Bioinformatics , vol.10 , pp. 27
    • Maulik, U.1    Mukhopadhyay, A.2    Bandyopadhyay, S.3
  • 69
    • 80051687582 scopus 로고    scopus 로고
    • MOSCFRA: A multiobjective genetic approach for simultaneous clustering and gene ranking
    • K. C. Mondal, A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and N. Pasquier. 2010. MOSCFRA: A multiobjective genetic approach for simultaneous clustering and gene ranking. In CIBB. 174-187.
    • (2010) CIBB , pp. 174-187
    • Mondal, K.C.1    Mukhopadhyay, A.2    Maulik, U.3    Bandyopadhyay, S.4    Pasquier, N.5
  • 73
    • 78649720287 scopus 로고    scopus 로고
    • Multi-class clustering of cancer subtypes through SVM based ensemble of Pareto-optimal solutions for gene marker identification
    • A. Mukhopadhyay, S. Bandyopadhyay, and U. Maulik. 2010. Multi-class clustering of cancer subtypes through SVM based ensemble of Pareto-optimal solutions for gene marker identification. PloS One 5, 11, e13803.
    • (2010) PloS One , vol.5 , Issue.11 , pp. e13803
    • Mukhopadhyay, A.1    Bandyopadhyay, S.2    Maulik, U.3
  • 75
    • 63149099143 scopus 로고    scopus 로고
    • Unsupervised pixel classification in satellite imagery using multiobjective fuzzy clustering combined with SVM classifier
    • A. Mukhopadhyay and U. Maulik. 2009. Unsupervised pixel classification in satellite imagery using multiobjective fuzzy clustering combined with SVM classifier. IEEE Transactions on Geoscience and Remote Sensing 47, 4, 1132-1138.
    • (2009) IEEE Transactions on Geoscience and Remote Sensing , vol.47 , Issue.4 , pp. 1132-1138
    • Mukhopadhyay, A.1    Maulik, U.2
  • 76
    • 77957924756 scopus 로고    scopus 로고
    • A multiobjective approach to MR brain image segmentation
    • A. Mukhopadhyay and U. Maulik. 2011. A multiobjective approach to MR brain image segmentation. Applied Soft Computing 11, 872-880.
    • (2011) Applied Soft Computing , vol.11 , pp. 872-880
    • Mukhopadhyay, A.1    Maulik, U.2
  • 77
  • 80
    • 84859528859 scopus 로고    scopus 로고
    • Gene expression data analysis using multiobjective clustering improved with SVM based ensemble
    • A. Mukhopadhyay, U. Maulik, and S. Bandyopadhyay. 2011. Gene expression data analysis using multiobjective clustering improved with SVM based ensemble. In Silico Biology 11, 1-2, 19-27.
    • (2011) Silico Biology , vol.11 , Issue.1-2 , pp. 19-27
    • Mukhopadhyay, A.1    Maulik, U.2    Bandyopadhyay, S.3
  • 84
    • 84867367460 scopus 로고    scopus 로고
    • Detecting protein complexes in a PPI network: A gene ontology based multi-objective evolutionary approach
    • A. Mukhopadhyay, S. Ray, and M. De. 2012. Detecting protein complexes in a PPI network: a gene ontology based multi-objective evolutionary approach. Molecular Biosystems 8, 11, 3036-3048.
    • (2012) Molecular Biosystems , vol.8 , Issue.11 , pp. 3036-3048
    • Mukhopadhyay, A.1    Ray, S.2    De, M.3
  • 86
    • 35048821949 scopus 로고    scopus 로고
    • Multi-objective genetic algorithm based clustering approach and its application to gene expression data
    • Tatyana Yakhno Ed.. Lecture Notes in Computer Science, Springer, Berlin
    • T. Özyer, Y. Liu, R. Alhajj, and K. Barker. 2005. Multi-objective genetic algorithm based clustering approach and its application to gene expression data. In Advances in Information Systems, Tatyana Yakhno (Ed.). Lecture Notes in Computer Science, Vol. 3261. Springer, Berlin, 451-461.
    • (2005) Advances in Information Systems , vol.3261 , pp. 451-461
    • Özyer, T.1    Liu, Y.2    Alhajj, R.3    Barker, K.4
  • 87
    • 79959374454 scopus 로고    scopus 로고
    • Integrating multi-objective genetic algorithm based clustering and data partitioning for skyline computation
    • T. Özyer, M. Zhang, and R. Alhajj. 2011. Integrating multi-objective genetic algorithm based clustering and data partitioning for skyline computation. Applied Intelligence 35, 1, 110-122.
    • (2011) Applied Intelligence , vol.35 , Issue.1 , pp. 110-122
    • Özyer, T.1    Zhang, M.2    Alhajj, R.3
  • 96
    • 24344460395 scopus 로고    scopus 로고
    • DEMO: Differential evolution for multiobjective optimization
    • C. A. Coello Coello, A. Hernandez Aguirre, and E. Zitzler Eds., Springer
    • T. Robic and B. Filipic. 2005. DEMO: Differential evolution for multiobjective optimization. Lecture Notes in Computer Science, C. A. Coello Coello, A. Hernandez Aguirre, and E. Zitzler (Eds.), Vol. 3410. Springer, 520-533.
    • (2005) Lecture Notes in Computer Science , vol.3410 , pp. 520-533
    • Robic, T.1    Filipic, B.2
  • 97
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • P. J. Rousseeuw. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational Applied Mathematics 20, 53-65.
    • (1987) Journal of Computational Applied Mathematics , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 98
    • 84930327983 scopus 로고    scopus 로고
    • Multiobjective differential evolution-based fuzzy clustering for MR brain image segmentation
    • P. K. Saha, U. Maulik, and S. Basu Eds.. Springer, Berlin
    • I. Saha and U. Maulik. 2014. Multiobjective differential evolution-based fuzzy clustering for MR brain image segmentation. In Advanced Computational Approaches to Biomedical Engineering, P. K. Saha, U. Maulik, and S. Basu (Eds.). Springer, Berlin, 71-86.
    • (2014) Advanced Computational Approaches to Biomedical Engineering , pp. 71-86
    • Saha, I.1    Maulik, U.2
  • 99
    • 80052917743 scopus 로고    scopus 로고
    • Multiobjective differential crisp clustering for evaluation of clusters dynamically
    • T. Czachorski, S. Kozielski, and U. Stanczyk Eds.. Advances in Intelligent and Soft Computing, Springer, Berlin
    • I. Saha, U. Maulik, and D. Plewczynski. 2011a. Multiobjective differential crisp clustering for evaluation of clusters dynamically. In Man-Machine Interactions 2, T. Czachorski, S. Kozielski, and U. Stanczyk (Eds.). Advances in Intelligent and Soft Computing, Vol. 103. Springer, Berlin, 307-313.
    • (2011) Man-machine Interactions 2 , vol.103 , pp. 307-313
    • Saha, I.1    Maulik, U.2    Plewczynski, D.3
  • 100
    • 78751629236 scopus 로고    scopus 로고
    • A new multi-objective technique for differential fuzzy clustering
    • I. Saha, U. Maulik, and D. Plewczynski. 2011b. A new multi-objective technique for differential fuzzy clustering. Applied Soft Computing 11, 2, 2765-2776.
    • (2011) Applied Soft Computing , vol.11 , Issue.2 , pp. 2765-2776
    • Saha, I.1    Maulik, U.2    Plewczynski, D.3
  • 101
    • 70349121272 scopus 로고    scopus 로고
    • A new multiobjective simulated annealing based clustering technique using symmetry
    • S. Saha and S. Bandyopadhyay. 2009. A new multiobjective simulated annealing based clustering technique using symmetry. Pattern Recognition Letters 30, 15, 1392-1403.
    • (2009) Pattern Recognition Letters , vol.30 , Issue.15 , pp. 1392-1403
    • Saha, S.1    Bandyopadhyay, S.2
  • 102
    • 84869429361 scopus 로고    scopus 로고
    • A generalized automatic clustering algorithm in a multiobjective framework
    • S. Saha and S. Bandyopadhyay. 2013. A generalized automatic clustering algorithm in a multiobjective framework. Applied Soft Computing 13, 1, 89-108.
    • (2013) Applied Soft Computing , vol.13 , Issue.1 , pp. 89-108
    • Saha, S.1    Bandyopadhyay, S.2
  • 105
    • 0021202650 scopus 로고
    • K-means type algorithms: A generalized convergence theorem and characterization of local optimality
    • S. Z. Selim and M. A. Ismail. 1984. K-means type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 81-87.
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.6 , pp. 81-87
    • Selim, S.Z.1    Ismail, M.A.2
  • 106
    • 0037232126 scopus 로고    scopus 로고
    • Analyzing microarray data using cluster analysis
    • W. Shannon, R. Culverhouse, and J. Duncan. 2003. Analyzing microarray data using cluster analysis. Pharmacogenomics 4, 1, 41-51.
    • (2003) Pharmacogenomics , vol.4 , Issue.1 , pp. 41-51
    • Shannon, W.1    Culverhouse, R.2    Duncan, J.3
  • 108
    • 0000852513 scopus 로고
    • Multiobjective optimization using nondominated sorting in genetic algorithms
    • N. Srinivas and K. Deb. 1994. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2, 3, 221-248.
    • (1994) Evolutionary Computation , vol.2 , Issue.3 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 109
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • A. Strehl and J. Ghosh. 2002. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. In Machine Learning Research, Vol. 3. 583-617.
    • (2002) Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 110
    • 84883098695 scopus 로고    scopus 로고
    • Parallel hybrid clustering using genetic programming and multiobjective fitness with density (PYRAMID)
    • S. F. Crone, S. Lessmann, and R. Stahlbock Eds.. CSREA Press
    • J. Sun, W. Sverdlik, and S. Tout. 2006. Parallel hybrid clustering using genetic programming and multiobjective fitness with density (PYRAMID). In DMIN, S. F. Crone, S. Lessmann, and R. Stahlbock (Eds.). CSREA Press, 197-203.
    • (2006) DMIN , pp. 197-203
    • Sun, J.1    Sverdlik, W.2    Tout, S.3
  • 111
    • 77349089680 scopus 로고    scopus 로고
    • Data clustering using multi-objective differential evolution algorithms
    • K. Suresh, D. Kundu, S. Ghosh, S. Das, and A. Abraham. 2009b. Data clustering using multi-objective differential evolution algorithms. Fundamenta Informatica 97, 4, 381-403.
    • (2009) Fundamenta Informatica , vol.97 , Issue.4 , pp. 381-403
    • Suresh, K.1    Kundu, D.2    Ghosh, S.3    Das, S.4    Abraham, A.5
  • 112
    • 77449148945 scopus 로고    scopus 로고
    • Multi-objective differential evolution for automatic clustering with application to micro-array data analysis
    • K. Suresh, D. Kundu, S. Ghosh, S. Das, A. Abraham, and S. Y. Han. 2009a. Multi-objective differential evolution for automatic clustering with application to micro-array data analysis. Sensors 9, 5, 3981-4004.
    • (2009) Sensors , vol.9 , Issue.5 , pp. 3981-4004
    • Suresh, K.1    Kundu, D.2    Ghosh, S.3    Das, S.4    Abraham, A.5    Han, S.Y.6
  • 114
    • 34547434740 scopus 로고    scopus 로고
    • On fuzzy cluster validity indices
    • W. Wanga and Y. Zhanga. 2007. On fuzzy cluster validity indices. Fuzzy Sets and Systems 158, 19, 2095-2117.
    • (2007) Fuzzy Sets and Systems , vol.158 , Issue.19 , pp. 2095-2117
    • Wanga, W.1    Zhanga, Y.2
  • 119
    • 84866877385 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithm-based soft subspace clustering
    • L. Zhu, L. Cao, and J. Yang. 2012. Multiobjective evolutionary algorithm-based soft subspace clustering. In IEEE Congress on Evolutionary Computation. 1-8.
    • (2012) IEEE Congress on Evolutionary Computation , pp. 1-8
    • Zhu, L.1    Cao, L.2    Yang, J.3
  • 121
    • 35048846146 scopus 로고    scopus 로고
    • Indicator-based selection in multiobjective search
    • X. Yao et al. Ed.. Springer-Verlag. Lecture Notes in Computer Science, Birmingham, UK
    • E. Zitzler and S. Künzli. 2004. Indicator-based selection in multiobjective search. In Parallel Problem Solving from Nature - PPSN VIII, X. Yao et al. (Ed.). Springer-Verlag. Lecture Notes in Computer Science Vol. 3242, Birmingham, UK, 832-842.
    • (2004) Parallel Problem Solving from Nature - PPSN VIII , vol.3242 , pp. 832-842
    • Zitzler, E.1    Künzli, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.