-
1
-
-
39149112242
-
The anode potential regulates bacterial activity in microbial fuel cells
-
Aelterman, P., S. Freguia, J. Keller, W. Verstraete, and K. Rabaey. 2008. The anode potential regulates bacterial activity in microbial fuel cells. Appl. Microbiol. Biotechnol. 78: 409-418.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.78
, pp. 409-418
-
-
Aelterman, P.1
Freguia, S.2
Keller, J.3
Verstraete, W.4
Rabaey, K.5
-
2
-
-
0012111234
-
Electricity generation by microorganisms
-
Bennetto, H. P. 1990. Electricity generation by microorganisms. Biotechnol. Edu. 1: 163-168.
-
(1990)
Biotechnol. Edu.
, vol.1
, pp. 163-168
-
-
Bennetto, H.P.1
-
3
-
-
33846631531
-
A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes
-
Biffinger, J. C., J. Pietron, R. Ray, B. Little, and B. R. Ringeisen. 2007. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens. Bioelectron. 22: 1672-1679.
-
(2007)
Biosens. Bioelectron.
, vol.22
, pp. 1672-1679
-
-
Biffinger, J.C.1
Pietron, J.2
Ray, R.3
Little, B.4
Ringeisen, B.R.5
-
4
-
-
0037127004
-
Electrode-reducing microorganisms that harvest energy from marine sediments
-
Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295: 483-485.
-
(2002)
Science
, vol.295
, pp. 483-485
-
-
Bond, D.R.1
Holmes, D.E.2
Tender, L.M.3
Lovley, D.R.4
-
5
-
-
0037337606
-
Electricity production by Geobacter sulfurreducens attached to electrodes
-
Bond, D. R. and D. R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548-1555.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 1548-1555
-
-
Bond, D.R.1
Lovley, D.R.2
-
6
-
-
77649235432
-
Directly applicable microbial fuel cells in aeration tank for wastewater treatment
-
Cha, J., S. Choi, H. Yu, H. Kim, and C. Kim. 2010. Directly applicable microbial fuel cells in aeration tank for wastewater treatment. Bioelectrochemistry 78: 72-79.
-
(2010)
Bioelectrochemistry
, vol.78
, pp. 72-79
-
-
Cha, J.1
Choi, S.2
Yu, H.3
Kim, H.4
Kim, C.5
-
7
-
-
0141542682
-
Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells
-
Chaudhuri, S. K. and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229-1232.
-
(2003)
Nat. Biotechnol.
, vol.21
, pp. 1229-1232
-
-
Chaudhuri, S.K.1
Lovley, D.R.2
-
8
-
-
33646701906
-
Electrochemically active bacteria (EAB) and mediator-less microbial fuel cell
-
Chang, I. S., H. S. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim. 2006. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cell. J. Microbiol. Biotechnol. 16: 163-177.
-
(2006)
J. Microbiol. Biotechnol.
, vol.16
, pp. 163-177
-
-
Chang, I.S.1
Moon, H.S.2
Bretschger, O.3
Jang, J.K.4
Park, H.I.5
Nealson, K.H.6
Kim, B.H.7
-
9
-
-
43049132155
-
Electricity from microorganisms
-
Debabov, V. G. 2008. Electricity from microorganisms. Microbiology 77: 123-131.
-
(2008)
Microbiology
, vol.77
, pp. 123-131
-
-
Debabov, V.G.1
-
10
-
-
34447285505
-
A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy
-
Du, Z., H. Li, and T. Gu. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25: 464-482.
-
(2007)
Biotechnol. Adv.
, vol.25
, pp. 464-482
-
-
Du, Z.1
Li, H.2
Gu, T.3
-
11
-
-
0012957636
-
Operational parameters affecting the performance of a mediator-less microbial fuel cell
-
Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18: 327-334.
-
(2003)
Biosens. Bioelectron.
, vol.18
, pp. 327-334
-
-
Gil, G.C.1
Chang, I.S.2
Kim, B.H.3
Kim, M.4
Jang, J.K.5
Park, H.S.6
Kim, H.J.7
-
12
-
-
0032986076
-
Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate
-
Kieft, T. L., J. K. Fredrickson, T. C. Onstott, Y. A. Gorby, H. M. Kostandarithes, T. J. Bailey, et al. 1999. Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl. Environ. Microbiol. 65: 1214-1221.
-
(1999)
Appl. Environ. Microbiol.
, vol.65
, pp. 1214-1221
-
-
Kieft, T.L.1
Fredrickson, J.K.2
Onstott, T.C.3
Gorby, Y.A.4
Kostandarithes, H.M.5
Bailey, T.J.6
-
13
-
-
0032933082
-
Direct electrode reaction of an Fe(III)-reducing bacterium, Shewanella putrefaciens
-
Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park. 1999. Direct electrode reaction of an Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 127-131.
-
(1999)
J. Microbiol. Biotechnol.
, vol.9
, pp. 127-131
-
-
Kim, B.H.1
Kim, H.J.2
Hyun, M.S.3
Park, D.H.4
-
14
-
-
78049455733
-
Optimization of culture conditions and electricity generation using Geobacter sulfurreducens in a dual-chambered microbial fuel cell
-
Kim, M. S. and Y. J. Lee. 2010. Optimization of culture conditions and electricity generation using Geobacter sulfurreducens in a dual-chambered microbial fuel cell. Int. J. Hydrogen Energy 35: 13028-13034.
-
(2010)
Int. J. Hydrogen Energy.
, vol.35
, pp. 13028-13034
-
-
Kim, M.S.1
Lee, Y.J.2
-
15
-
-
0037074898
-
A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens
-
Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30: 145-152.
-
(2002)
Enzyme Microb. Technol.
, vol.30
, pp. 145-152
-
-
Kim, H.J.1
Park, H.S.2
Hyun, M.S.3
Chang, I.S.4
Kim, M.5
Kim, B.H.6
-
16
-
-
84947724411
-
-
John Wiley & Sons, New York, NY, USA
-
Logan, B. E. 2008. Microbial Fuel Cells. John Wiley & Sons, New York, NY, USA.
-
(2008)
Microbial Fuel Cells
-
-
Logan, B.E.1
-
17
-
-
0346243803
-
Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments
-
Methe, B. A., K. E. Nelson, J. A. Eisen, I. T. Paulsen, W. Nelson, J. F. Heidelberg, et al. 2003. Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments. Science 302: 1967-1969.
-
(2003)
Science
, vol.302
, pp. 1967-1969
-
-
Methe, B.A.1
Nelson, K.E.2
Eisen, J.A.3
Paulsen, I.T.4
Nelson, W.5
Heidelberg, J.F.6
-
18
-
-
18844451775
-
Electricity generation using membrane and salt bridge microbial fuel cells
-
Min, B., S. Cheng, and B. E. Logan. 2005. Electricity generation using membrane and salt bridge microbial fuel cells. Wat. Res. 39: 1675-1686.
-
(2005)
Wat. Res.
, vol.39
, pp. 1675-1686
-
-
Min, B.1
Cheng, S.2
Logan, B.E.3
-
19
-
-
0026740398
-
Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1
-
Myers, C. R. and J. M. Myers. 1992. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 174: 3429-3438.
-
(1992)
J. Bacteriol.
, vol.174
, pp. 3429-3438
-
-
Myers, C.R.1
Myers, J.M.2
-
20
-
-
80051592257
-
Microbial fuel cell of Enterobacter cloacae: Effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical losses
-
Nimje, V. R., C. Y. Chen, C. C. Chen, J. Y. Tsai, H. R. Chen, Y. M. Huang, et al. 2011. Microbial fuel cell of Enterobacter cloacae: Effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical losses. Int. J. Hydrogen Energy 36: 11093-11101.
-
(2011)
Int. J. Hydrogen Energy.
, vol.36
, pp. 11093-11101
-
-
Nimje, V.R.1
Chen, C.Y.2
Chen, C.C.3
Tsai, J.Y.4
Chen, H.R.5
Huang, Y.M.6
-
21
-
-
18344391948
-
Microbial phenazine production enhances electron transfer in biofuel cells
-
Rabaey, K., N. Boon, M. Hofte, and W. Verstraete. 2005. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39: 3401-3408.
-
(2005)
Environ. Sci. Technol.
, vol.39
, pp. 3401-3408
-
-
Rabaey, K.1
Boon, N.2
Hofte, M.3
Verstraete, W.4
-
22
-
-
21344461500
-
Extracellular electron transfer via microbial nanowires
-
Reguera, G., K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, and D. R. Lovley. 2005. Extracellular electron transfer via microbial nanowires. Nature 435: 1098-1101.
-
(2005)
Nature
, vol.435
, pp. 1098-1101
-
-
Reguera, G.1
McCarthy, K.D.2
Mehta, T.3
Nicoll, J.S.4
Tuominen, M.T.5
Lovley, D.R.6
-
23
-
-
42749096540
-
Cathodic limitations in microbial fuel cells: An overview
-
Rismani-Yazdi, H., S. M. Carver, A. D. Christy, and A. H. Tuovinen. 2008. Cathodic limitations in microbial fuel cells: An overview. J. Power Sources 180: 683-694.
-
(2008)
J. Power Sources.
, vol.180
, pp. 683-694
-
-
Rismani-Yazdi, H.1
Carver, S.M.2
Christy, A.D.3
Tuovinen, A.H.4
-
24
-
-
74549120254
-
The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs)
-
Sharma, Y. and B. Li. 2010. The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresour. Technol. 101: 1844-1850.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 1844-1850
-
-
Sharma, Y.1
Li, B.2
-
25
-
-
68349141657
-
Behavior of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment
-
Veer Raghavulu, S., S. Venkata Mohan, M. Venkateswar Reddy, G. Mohanakrishna, and P. N. Sarma. 2009. Behavior of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment. Int. J. Hydrogen Energy 34: 7547-7554.
-
(2009)
Int. J. Hydrogen Energy.
, vol.34
, pp. 7547-7554
-
-
Veer Raghavulu, S.1
Venkata Mohan, S.2
Venkateswar Reddy, M.3
Mohanakrishna, G.4
Sarma, P.N.5
-
26
-
-
76049116695
-
Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode
-
Zhuang, L., S. Zhou, Y. Li, and Y. Yuan. 2010. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Bioresour. Technol. 101: 3514-3519.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 3514-3519
-
-
Zhuang, L.1
Zhou, S.2
Li, Y.3
Yuan, Y.4
|