메뉴 건너뛰기




Volumn 22, Issue 10, 2012, Pages 1395-1400

Enhancing factors of electricity generation in a microbial fuel cell using Geobacter sulfurreducens

Author keywords

Coulombic efficiency; Electricity generation; Geobacter sulfurreducens; Immobilization; Microbial fuel cell; Substrate specificity

Indexed keywords

ACETATES; ANAEROBIOSIS; ARGON; BACTERIAL LOAD; BACTERIOLOGICAL TECHNIQUES; BIOELECTRIC ENERGY SOURCES; BUTYRATES; CARBON; CULTURE MEDIA; ELECTRICITY; ELECTRODES; ELECTRON TRANSPORT; GEOBACTER; HYDROGEN-ION CONCENTRATION; MALATES; PLATINUM; SUBSTRATE SPECIFICITY; SUCCINIC ACID; TIME FACTORS;

EID: 84930484179     PISSN: 10177825     EISSN: 17388872     Source Type: Journal    
DOI: 10.4014/jmb.1204.04010     Document Type: Article
Times cited : (19)

References (26)
  • 2
    • 0012111234 scopus 로고
    • Electricity generation by microorganisms
    • Bennetto, H. P. 1990. Electricity generation by microorganisms. Biotechnol. Edu. 1: 163-168.
    • (1990) Biotechnol. Edu. , vol.1 , pp. 163-168
    • Bennetto, H.P.1
  • 3
    • 33846631531 scopus 로고    scopus 로고
    • A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes
    • Biffinger, J. C., J. Pietron, R. Ray, B. Little, and B. R. Ringeisen. 2007. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens. Bioelectron. 22: 1672-1679.
    • (2007) Biosens. Bioelectron. , vol.22 , pp. 1672-1679
    • Biffinger, J.C.1    Pietron, J.2    Ray, R.3    Little, B.4    Ringeisen, B.R.5
  • 4
    • 0037127004 scopus 로고    scopus 로고
    • Electrode-reducing microorganisms that harvest energy from marine sediments
    • Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295: 483-485.
    • (2002) Science , vol.295 , pp. 483-485
    • Bond, D.R.1    Holmes, D.E.2    Tender, L.M.3    Lovley, D.R.4
  • 5
    • 0037337606 scopus 로고    scopus 로고
    • Electricity production by Geobacter sulfurreducens attached to electrodes
    • Bond, D. R. and D. R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548-1555.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 1548-1555
    • Bond, D.R.1    Lovley, D.R.2
  • 6
    • 77649235432 scopus 로고    scopus 로고
    • Directly applicable microbial fuel cells in aeration tank for wastewater treatment
    • Cha, J., S. Choi, H. Yu, H. Kim, and C. Kim. 2010. Directly applicable microbial fuel cells in aeration tank for wastewater treatment. Bioelectrochemistry 78: 72-79.
    • (2010) Bioelectrochemistry , vol.78 , pp. 72-79
    • Cha, J.1    Choi, S.2    Yu, H.3    Kim, H.4    Kim, C.5
  • 7
    • 0141542682 scopus 로고    scopus 로고
    • Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells
    • Chaudhuri, S. K. and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229-1232.
    • (2003) Nat. Biotechnol. , vol.21 , pp. 1229-1232
    • Chaudhuri, S.K.1    Lovley, D.R.2
  • 9
    • 43049132155 scopus 로고    scopus 로고
    • Electricity from microorganisms
    • Debabov, V. G. 2008. Electricity from microorganisms. Microbiology 77: 123-131.
    • (2008) Microbiology , vol.77 , pp. 123-131
    • Debabov, V.G.1
  • 10
    • 34447285505 scopus 로고    scopus 로고
    • A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy
    • Du, Z., H. Li, and T. Gu. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25: 464-482.
    • (2007) Biotechnol. Adv. , vol.25 , pp. 464-482
    • Du, Z.1    Li, H.2    Gu, T.3
  • 11
    • 0012957636 scopus 로고    scopus 로고
    • Operational parameters affecting the performance of a mediator-less microbial fuel cell
    • Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18: 327-334.
    • (2003) Biosens. Bioelectron. , vol.18 , pp. 327-334
    • Gil, G.C.1    Chang, I.S.2    Kim, B.H.3    Kim, M.4    Jang, J.K.5    Park, H.S.6    Kim, H.J.7
  • 13
    • 0032933082 scopus 로고    scopus 로고
    • Direct electrode reaction of an Fe(III)-reducing bacterium, Shewanella putrefaciens
    • Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park. 1999. Direct electrode reaction of an Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 127-131.
    • (1999) J. Microbiol. Biotechnol. , vol.9 , pp. 127-131
    • Kim, B.H.1    Kim, H.J.2    Hyun, M.S.3    Park, D.H.4
  • 14
    • 78049455733 scopus 로고    scopus 로고
    • Optimization of culture conditions and electricity generation using Geobacter sulfurreducens in a dual-chambered microbial fuel cell
    • Kim, M. S. and Y. J. Lee. 2010. Optimization of culture conditions and electricity generation using Geobacter sulfurreducens in a dual-chambered microbial fuel cell. Int. J. Hydrogen Energy 35: 13028-13034.
    • (2010) Int. J. Hydrogen Energy. , vol.35 , pp. 13028-13034
    • Kim, M.S.1    Lee, Y.J.2
  • 15
    • 0037074898 scopus 로고    scopus 로고
    • A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens
    • Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30: 145-152.
    • (2002) Enzyme Microb. Technol. , vol.30 , pp. 145-152
    • Kim, H.J.1    Park, H.S.2    Hyun, M.S.3    Chang, I.S.4    Kim, M.5    Kim, B.H.6
  • 16
    • 84947724411 scopus 로고    scopus 로고
    • John Wiley & Sons, New York, NY, USA
    • Logan, B. E. 2008. Microbial Fuel Cells. John Wiley & Sons, New York, NY, USA.
    • (2008) Microbial Fuel Cells
    • Logan, B.E.1
  • 17
    • 0346243803 scopus 로고    scopus 로고
    • Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments
    • Methe, B. A., K. E. Nelson, J. A. Eisen, I. T. Paulsen, W. Nelson, J. F. Heidelberg, et al. 2003. Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments. Science 302: 1967-1969.
    • (2003) Science , vol.302 , pp. 1967-1969
    • Methe, B.A.1    Nelson, K.E.2    Eisen, J.A.3    Paulsen, I.T.4    Nelson, W.5    Heidelberg, J.F.6
  • 18
    • 18844451775 scopus 로고    scopus 로고
    • Electricity generation using membrane and salt bridge microbial fuel cells
    • Min, B., S. Cheng, and B. E. Logan. 2005. Electricity generation using membrane and salt bridge microbial fuel cells. Wat. Res. 39: 1675-1686.
    • (2005) Wat. Res. , vol.39 , pp. 1675-1686
    • Min, B.1    Cheng, S.2    Logan, B.E.3
  • 19
    • 0026740398 scopus 로고
    • Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1
    • Myers, C. R. and J. M. Myers. 1992. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 174: 3429-3438.
    • (1992) J. Bacteriol. , vol.174 , pp. 3429-3438
    • Myers, C.R.1    Myers, J.M.2
  • 20
    • 80051592257 scopus 로고    scopus 로고
    • Microbial fuel cell of Enterobacter cloacae: Effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical losses
    • Nimje, V. R., C. Y. Chen, C. C. Chen, J. Y. Tsai, H. R. Chen, Y. M. Huang, et al. 2011. Microbial fuel cell of Enterobacter cloacae: Effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical losses. Int. J. Hydrogen Energy 36: 11093-11101.
    • (2011) Int. J. Hydrogen Energy. , vol.36 , pp. 11093-11101
    • Nimje, V.R.1    Chen, C.Y.2    Chen, C.C.3    Tsai, J.Y.4    Chen, H.R.5    Huang, Y.M.6
  • 21
    • 18344391948 scopus 로고    scopus 로고
    • Microbial phenazine production enhances electron transfer in biofuel cells
    • Rabaey, K., N. Boon, M. Hofte, and W. Verstraete. 2005. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39: 3401-3408.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 3401-3408
    • Rabaey, K.1    Boon, N.2    Hofte, M.3    Verstraete, W.4
  • 24
    • 74549120254 scopus 로고    scopus 로고
    • The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs)
    • Sharma, Y. and B. Li. 2010. The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresour. Technol. 101: 1844-1850.
    • (2010) Bioresour. Technol. , vol.101 , pp. 1844-1850
    • Sharma, Y.1    Li, B.2
  • 25
    • 68349141657 scopus 로고    scopus 로고
    • Behavior of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment
    • Veer Raghavulu, S., S. Venkata Mohan, M. Venkateswar Reddy, G. Mohanakrishna, and P. N. Sarma. 2009. Behavior of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment. Int. J. Hydrogen Energy 34: 7547-7554.
    • (2009) Int. J. Hydrogen Energy. , vol.34 , pp. 7547-7554
    • Veer Raghavulu, S.1    Venkata Mohan, S.2    Venkateswar Reddy, M.3    Mohanakrishna, G.4    Sarma, P.N.5
  • 26
    • 76049116695 scopus 로고    scopus 로고
    • Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode
    • Zhuang, L., S. Zhou, Y. Li, and Y. Yuan. 2010. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Bioresour. Technol. 101: 3514-3519.
    • (2010) Bioresour. Technol. , vol.101 , pp. 3514-3519
    • Zhuang, L.1    Zhou, S.2    Li, Y.3    Yuan, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.