메뉴 건너뛰기




Volumn 33, Issue 2, 2015, Pages

A small-footprint accelerator for large-scale neural networks

Author keywords

Convolutional neural network; Deep learning; Deep neural network; Hardware accelerator

Indexed keywords

ACCELERATION; COMPUTATIONAL EFFICIENCY; CONVOLUTION; CONVOLUTIONAL NEURAL NETWORKS; DEEP LEARNING; DEEP NEURAL NETWORKS; EMBEDDED SYSTEMS; LEARNING SYSTEMS;

EID: 84930319636     PISSN: 07342071     EISSN: 15577333     Source Type: Journal    
DOI: 10.1145/2701417     Document Type: Conference Paper
Times cited : (6)

References (45)
  • 3
    • 77955007393 scopus 로고    scopus 로고
    • A dynamically configurable coprocessor for convolutional neural networks
    • ACM Press, New York, NY
    • Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari Cadambi. 2010. A dynamically configurable coprocessor for convolutional neural networks. In International Symposium on Computer Architecture. ACM Press, New York, NY, 247. DOI:http://dx.doi.org/10.1145/1815961.1815993
    • (2010) International Symposium on Computer Architecture , pp. 247
    • Chakradhar, S.1    Sankaradas, M.2    Jakkula, V.3    Cadambi, S.4
  • 7
    • 34249753618 scopus 로고
    • Support-vector networks
    • Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. In Machine Learning. 273-297.
    • (1995) Machine Learning , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 0035989190 scopus 로고    scopus 로고
    • On the capabilities of neural networks using limited precision weights
    • 2002
    • Sorin Draghici. 2002. On the capabilities of neural networks using limited precision weights. Neural Netw. 15, 3 (2002), 395-414. DOI:http://dx.doi.org/10.1016/S0893-6080(02)00032-1
    • (2002) Neural Netw. , vol.15 , Issue.3 , pp. 395-414
    • Draghici, S.1
  • 13
    • 64849117951 scopus 로고    scopus 로고
    • Bridging the computation gap between programmable processors and hardwired accelerators
    • IEEE Computer Society
    • Kevin Fan, Manjunath Kudlur, Ganesh S. Dasika, and Scott A. Mahlke. 2009. Bridging the computation gap between programmable processors and hardwired accelerators. In HPCA. IEEE Computer Society, 313-322.
    • (2009) HPCA , pp. 313-322
    • Fan, K.1    Kudlur, M.2    Dasika, G.S.3    Mahlke, S.A.4
  • 14
    • 80054919955 scopus 로고    scopus 로고
    • NeuFlow: A runtime reconfigurable dataflow processor for vision
    • IEEE
    • Clement Farabet, BerinMartini, Benoit Corda, Polina Akselrod, Eugenio Culurciello, and Yann LeCun. 2011. NeuFlow: A runtime reconfigurable dataflow processor for vision. In CVPR Workshop. IEEE, 109-116. DOI:http://dx.doi.org/10.1109/CVPRW.2011.5981829
    • (2011) CVPR Workshop , pp. 109-116
    • Farabet, C.1    Martini, B.2    Corda, B.3    Akselrod, P.4    Culurciello, E.5    LeCun, Y.6
  • 18
    • 0027557033 scopus 로고
    • Finite precision error analysis of neural network hardware implementations
    • 1993
    • Jordan L. Holi and Jenq-Neng Hwang. 1993. Finite precision error analysis of neural network hardware implementations. IEEE Trans. Comput. 42, 3 (1993), 281-290. DOI:http://dx.doi.org/10.1109/12.210171
    • (1993) IEEE Trans. Comput. , vol.42 , Issue.3 , pp. 281-290
    • Holi, J.L.1    Hwang, J.-N.2
  • 19
    • 0024909727 scopus 로고
    • An electrically trainable artificial neural network (ETANN) with 10240 "floating gate" synapses
    • IEEE Press, Piscataway, NJ
    • Mark Holler, Simon Tam, Hernan Castro, and Ronald Benson. 1990. An electrically trainable artificial neural network (ETANN) with 10240 "floating gate" synapses. In Artificial Neural Networks. IEEE Press, Piscataway, NJ, 50-55. DOI:http://dx.doi.org/10.1109/IJCNN.1989.118698
    • (1990) Artificial Neural Networks , pp. 50-55
    • Holler, M.1    Tam, S.2    Castro, H.3    Benson, R.4
  • 22
    • 73249114232 scopus 로고    scopus 로고
    • A 201.4 GOPS 496 mW real-time multi-object recognition processor with bio-inspired neural perception engine
    • (Jan. 2010)
    • Joo-young Kim, Minsu Kim, Seungjin Lee, Jinwook Oh, Kwanho Kim, and Hoi-jun Yoo. 2010. A 201.4 GOPS 496 mW real-time multi-object recognition processor with bio-inspired neural perception engine. IEEE Journal of Solid-State Circuits 45, 1 (Jan. 2010), 32-45. DOI:http://dx.doi.org/10.1109/JSSC.2009.2031768
    • (2010) IEEE Journal of Solid-State Circuits , vol.45 , Issue.1 , pp. 32-45
    • Kim, J.-Y.1    Kim, M.2    Lee, S.3    Oh, J.4    Kim, K.5    Yoo, H.-J.6
  • 24
    • 33745899311 scopus 로고    scopus 로고
    • An efficient hardware architecture for a neural network activation function generator
    • JunWang, Zhang Yi, Jacek M. Zurada, Bao-Liang Lu, and Hujun Yin (Eds.), Lecture Notes in Computer Science, Springer
    • Daniel Larkin, Andrew Kinane, Valentin Muresan, and Noel E O'Connor. 2006b. An efficient hardware architecture for a neural network activation function generator. In ISNN (2), JunWang, Zhang Yi, Jacek M. Zurada, Bao-Liang Lu, and Hujun Yin (Eds.), Lecture Notes in Computer Science, Vol. 3973. Springer, 1319-1327.
    • (2006) ISNN (2) , vol.3973 , pp. 1319-1327
    • Larkin, D.1    Kinane, A.2    Muresan, V.3    O'connor, N.E.4
  • 25
    • 33750683304 scopus 로고    scopus 로고
    • Towards hardware acceleration of neuroevolution for multimedia processing applications on mobile devices
    • Daniel Larkin, Andrew Kinane, and Noel E. O'Connor. 2006a. Towards hardware acceleration of neuroevolution for multimedia processing applications on mobile devices. In ICONIP (3). 1178-1188.
    • (2006) ICONIP (3) , pp. 1178-1188
    • Larkin, D.1    Kinane, A.2    O'connor, N.E.3
  • 26
    • 34547967782 scopus 로고    scopus 로고
    • An empirical evaluation of deep architectures on problems with many factors of variation
    • ACM Press, New York, New York
    • Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. 2007. An empirical evaluation of deep architectures on problems with many factors of variation. In International Conference on Machine Learning. ACM Press, New York, New York, 473-480. DOI:http://dx.doi.org/10.1145/1273496.1273556
    • (2007) International Conference on Machine Learning , pp. 473-480
    • Larochelle, H.1    Erhan, D.2    Courville, A.3    Bergstra, J.4    Bengio, Y.5
  • 28
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • 1998
    • Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86 (1998). DOI:http://dx.doi.org/10.1109/5.726791
    • (1998) Proc. IEEE , vol.86
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 35
  • 36
    • 84874575248 scopus 로고    scopus 로고
    • Convolutional neural networks applied to house numbers digit classification
    • Pierre Sermanet, Soumith Chintala, and Y. LeCun. 2012. Convolutional neural networks applied to house numbers digit classification. In International Conference on Pattern Recognition. http://ieeexplore.ieee.org/xpls/abs-all.jsp?arnumber=6460867.
    • (2012) International Conference on Pattern Recognition
    • Sermanet, P.1    Chintala, S.2    Lecun, Y.3
  • 37
    • 80054736963 scopus 로고    scopus 로고
    • Traffic sign recognition with multi-scale convolutional networks
    • IEEE
    • Pierre Sermanet and Yann LeCun. 2011. Traffic sign recognition with multi-scale convolutional networks. In International Joint Conference on Neural Networks. IEEE, 2809-2813. DOI:http://dx.doi.org/10.1109/IJCNN.2011.6033589
    • (2011) International Joint Conference on Neural Networks , pp. 2809-2813
    • Sermanet, P.1    Le Cun, Y.2
  • 39
    • 84864858301 scopus 로고    scopus 로고
    • A defect-tolerant accelerator for emerging high-performance applications
    • Portland, Oregon
    • Olivier Temam. 2012. A defect-tolerant accelerator for emerging high-performance applications. In International Symposium on Computer Architecture. Portland, Oregon.
    • (2012) International Symposium on Computer Architecture
    • Temam, O.1
  • 40
    • 0029386372 scopus 로고
    • Software assistance for data caches
    • 1995
    • Olivier Temam and Nathalie Drach. 1995. Software assistance for data caches. Future Generation Computer Systems 11, 6 (1995), 519-536. DOI:http://dx.doi.org/10.1016/0167-739X(95)00022-K
    • (1995) Future Generation Computer Systems , vol.11 , Issue.6 , pp. 519-536
    • Temam, O.1    Drach, N.2
  • 41
    • 67649661466 scopus 로고    scopus 로고
    • HP Labs, Palo Alto, Tech (2008)
    • Shyamkumar Thoziyoor, Naveen Muralimanohar, and JH Ahn. 2008. CACTI 5.1. HP Labs, Palo Alto, Tech (2008). http://www.hpl.hp.com/techreports/2008/HPL-2008-20.pdf?q=cacti.
    • (2008) CACTI 5.1
    • Thoziyoor, S.1    Muralimanohar, N.2    Ahn, J.H.3
  • 44
    • 33846098196 scopus 로고    scopus 로고
    • Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses
    • 2007
    • R. Jacob Vogelstein, Udayan Mallik, Joshua T. Vogelstein, and Gert Cauwenberghs. 2007. Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses. IEEE Transactions on Neural Networks 18, 1 (2007), 253-265.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.1 , pp. 253-265
    • Vogelstein, R.J.1    Mallik, U.2    Vogelstein, J.T.3    Cauwenberghs, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.