-
2
-
-
84874730362
-
2 composites as high performance anodes for lithium-ion batteries
-
2 composites as high performance anodes for lithium-ion batteries. J Mater Sci 48:3870–3876. doi:10.1007/s10853-013-7189-9
-
(2013)
J Mater Sci
, vol.48
, pp. 3870-3876
-
-
Jiang, S.H.1
Yue, W.B.2
Gao, Z.Q.3
Ren, Y.4
Ma, H.5
Zhao, X.H.6
Liu, Y.L.7
Yang, X.J.8
-
3
-
-
84903633097
-
2-PANI nanorod arrays with mechanical integrity and three dimensional electron transport for lithium batteries
-
2-PANI nanorod arrays with mechanical integrity and three dimensional electron transport for lithium batteries. Nano Energy 8:196–204
-
(2014)
Nano Energy
, vol.8
, pp. 196-204
-
-
Xu, W.W.1
Zhao, K.N.2
Niu, C.J.3
Zhang, L.4
Cai, Z.Y.5
Han, C.H.6
He, L.7
Shen, T.8
Yan, M.Y.9
Qu, L.B.10
Mai, L.Q.11
-
5
-
-
84908425507
-
3 ginger-like nanostructures with enhanced electrochemical properties
-
3 ginger-like nanostructures with enhanced electrochemical properties. Mater Lett 139:89–92
-
(2015)
Mater Lett
, vol.139
, pp. 89-92
-
-
Wang, W.1
Bu, F.X.2
Jiang, J.S.3
-
6
-
-
84908566397
-
3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries
-
3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy 9:364–372
-
(2014)
Nano Energy
, vol.9
, pp. 364-372
-
-
Chen, M.H.1
Liu, J.L.2
Chao, D.L.3
Wang, J.4
Yin, J.H.5
Lin, J.Y.6
Fan, H.J.7
Shen, Z.X.8
-
8
-
-
77955875714
-
4 nanoparticles as Anode of lithium ion batteries with enhanced reversible capacity and cyclic performance
-
4 nanoparticles as Anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194
-
(2010)
ACS Nano
, vol.4
, pp. 3187-3194
-
-
Wu, Z.-S.1
Ren, W.C.2
Wen, L.3
Gao, L.B.4
Zhao, J.P.5
Chen, Z.P.6
Zhou, G.M.7
Li, F.8
Cheng, H.-M.9
-
11
-
-
84900390703
-
Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application
-
Cao F, Pan GX, Xia XH, Tang PS, Chen HF (2014) Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application. J Power Sour. 264:161–167
-
(2014)
J Power Sour.
, vol.264
, pp. 161-167
-
-
Cao, F.1
Pan, G.X.2
Xia, X.H.3
Tang, P.S.4
Chen, H.F.5
-
12
-
-
16244395203
-
3 nanotubes in gas sensor and lithium-ion battery applications
-
3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17:582–586
-
(2005)
Adv Mater
, vol.17
, pp. 582-586
-
-
Chen, J.1
Xu, L.N.2
Li, W.Y.3
Gou, X.L.4
-
15
-
-
84922452738
-
Synthesis and electrochemical investigation of hollow hierarchical metal oxide microspheres for high performance lithium-ion batteries
-
Wang BB, Wang G, Wang H (2015) Synthesis and electrochemical investigation of hollow hierarchical metal oxide microspheres for high performance lithium-ion batteries. Electrochim Acta 156:1–10
-
(2015)
Electrochim Acta
, vol.156
-
-
Wang, B.B.1
Wang, G.2
Wang, H.3
-
16
-
-
84919880134
-
One-step electrochemical growth of three-dimensional Sn-Ni@PEO nanotube array as a high performance lithium-ion battery anode
-
Fan X, Dou P, Jiang AN, Ma DQ, Xu XH (2014) One-step electrochemical growth of three-dimensional Sn-Ni@PEO nanotube array as a high performance lithium-ion battery anode. ACS Appl Mater Interfaces 6:22282–22288
-
(2014)
ACS Appl Mater Interfaces
, vol.6
, pp. 22282-22288
-
-
Fan, X.1
Dou, P.2
Jiang, A.N.3
Ma, D.Q.4
Xu, X.H.5
-
19
-
-
84916607862
-
Synergistically engineered self-standing silicon/carbon composite arrays as high performance lithium battery anodes
-
Wang B, Qiu TF, Li XL, Luo B, Hao L, Zhang YB, Zhi LJ (2015) Synergistically engineered self-standing silicon/carbon composite arrays as high performance lithium battery anodes. J Mater Chem A 3:494–498
-
(2015)
J Mater Chem A
, vol.3
, pp. 494-498
-
-
Wang, B.1
Qiu, T.F.2
Li, X.L.3
Luo, B.4
Hao, L.5
Zhang, Y.B.6
Zhi, L.J.7
-
20
-
-
84862805736
-
Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control
-
Wu H, Chan G, Choi JW, Ryu I, Yao Y, Mcdowell MT, Lee SW, Jackson A, Yang Y, Hu LB, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotech 7:310–315
-
(2012)
Nat Nanotech
, vol.7
, pp. 310-315
-
-
Wu, H.1
Chan, G.2
Choi, J.W.3
Ryu, I.4
Yao, Y.5
Mcdowell, M.T.6
Lee, S.W.7
Jackson, A.8
Yang, Y.9
Hu, L.B.10
Cui, Y.11
-
24
-
-
31844449227
-
Surface modifications of electrode materials for lithium ion batteries
-
Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2006) Surface modifications of electrode materials for lithium ion batteries. Solid State Sci 8:113–128
-
(2006)
Solid State Sci
, vol.8
, pp. 113-128
-
-
Fu, L.J.1
Liu, H.2
Li, C.3
Wu, Y.P.4
Rahm, E.5
Holze, R.6
Wu, H.Q.7
-
25
-
-
84911916741
-
Silicon/carbon composite microspheres with hierarchical core-shell structure as anode for lithium ion batteries
-
Li S, Qin XY, Zhang HR, Wu JX, He Y-B, Li BH, Kang FY (2014) Silicon/carbon composite microspheres with hierarchical core-shell structure as anode for lithium ion batteries. Electrochem Commun 49:98–102
-
(2014)
Electrochem Commun
, vol.49
, pp. 98-102
-
-
Li, S.1
Qin, X.Y.2
Zhang, H.R.3
Wu, J.X.4
He, Y.-B.5
Li, B.H.6
Kang, F.Y.7
-
26
-
-
79951526826
-
Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications
-
Gowda SR, Reddy ALM, Shaijumon MM, Zhan XB, Ci LJ, Ajayan PM (2011) Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications. Nano lett 11:101–106
-
(2011)
Nano lett
, vol.11
, pp. 101-106
-
-
Gowda, S.R.1
Reddy, A.L.M.2
Shaijumon, M.M.3
Zhan, X.B.4
Ci, L.J.5
Ajayan, P.M.6
-
28
-
-
84903633097
-
2-PANI nanorod arrays with mechanical integrity and three dimensional electron transport for lithium batteries
-
2-PANI nanorod arrays with mechanical integrity and three dimensional electron transport for lithium batteries. Nano Energy 8:196–204
-
(2014)
Nano Energy
, vol.8
, pp. 196-204
-
-
Xu, W.W.1
Zhao, K.N.2
Niu, C.J.3
Zhang, L.4
Cai, Z.Y.5
Han, C.H.6
He, L.7
Shen, T.8
Yan, M.Y.9
Qu, L.B.10
Mai, L.Q.11
-
29
-
-
78649509535
-
2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries
-
2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries. J Power Sour 196:2195–2201
-
(2011)
J Power Sour
, vol.196
, pp. 2195-2201
-
-
Cui, L.F.1
Shen, J.2
Cheng, F.Y.3
Tao, Z.L.4
Chen, J.5
-
30
-
-
79960701451
-
Toward flexible polymer and paper-based energy storage devices
-
Nyholm L, Nystrom G, Mihranyan A, Stromme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751–3769
-
(2011)
Adv Mater
, vol.23
, pp. 3751-3769
-
-
Nyholm, L.1
Nystrom, G.2
Mihranyan, A.3
Stromme, M.4
-
31
-
-
84885390007
-
3/polypyrrole (Ppy) nanoarray as anode for micro lithium ion batteries
-
3/polypyrrole (Ppy) nanoarray as anode for micro lithium ion batteries. Nano energy 2:726–732
-
(2013)
Nano energy
, vol.2
, pp. 726-732
-
-
Liu, J.L.1
Zhou, W.W.2
Lai, L.F.3
Yang, H.P.4
Lim, S.H.5
Zhen, Y.D.6
Yu, T.7
Shen, Z.X.8
Lin, J.Y.9
-
32
-
-
77952372071
-
Arrays of sealed silicon nanotubes as anodes for lithium ion batteries
-
Song T, Xia JL, Lee J-H, Lee DH, Kwon M-S, Choi J-M, Wu J, Doo SK, Chang H, Park W, Zang DS, Kim H, Huang YG, Hwang K-C, Rogers JA, Paik U (2010) Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett 10:1710–1716
-
(2010)
Nano Lett
, vol.10
, pp. 1710-1716
-
-
Song, T.1
Xia, J.L.2
Lee, J.-H.3
Lee, D.H.4
Kwon, M.-S.5
Choi, J.-M.6
Wu, J.7
Doo, S.K.8
Chang, H.9
Park, W.10
Zang, D.S.11
Kim, H.12
Huang, Y.G.13
Hwang, K.-C.14
Rogers, J.A.15
Paik, U.16
-
35
-
-
74949093125
-
Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: large-area design and reversible lithium storage
-
Liu JP, Li YY, Fan HJ, Zhu ZH, Jiang J, Ding RM, Hu YY, Huang XT (2010) Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: large-area design and reversible lithium storage. Chem Mater 22:212–217
-
(2010)
Chem Mater
, vol.22
, pp. 212-217
-
-
Liu, J.P.1
Li, Y.Y.2
Fan, H.J.3
Zhu, Z.H.4
Jiang, J.5
Ding, R.M.6
Hu, Y.Y.7
Huang, X.T.8
-
36
-
-
34247330624
-
Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: direct solution synthesis, photoluminescence, and field emission
-
Liu JP, Huang XT, Li YY, Ji XX, Li ZK, He X, Sun FL (2007) Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: direct solution synthesis, photoluminescence, and field emission. J Phys Chem C 111:4990–4997
-
(2007)
J Phys Chem C
, vol.111
, pp. 4990-4997
-
-
Liu, J.P.1
Huang, X.T.2
Li, Y.Y.3
Ji, X.X.4
Li, Z.K.5
He, X.6
Sun, F.L.7
-
38
-
-
84898613112
-
2-polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries
-
2-polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries. Nano Energy 6:73–81
-
(2014)
Nano Energy
, vol.6
, pp. 73-81
-
-
Liu, R.Q.1
Li, D.Y.2
Wang, C.3
Li, N.4
Li, Q.5
Lu, X.J.6
Spendelow, J.S.7
Wu, G.8
-
39
-
-
84900454524
-
Synthesis and characterization of Fe@Fe2O3 core-shell nanoparticles/graphene anode material for lithium-ion batteries
-
Wu C, Zhang H, Wu YX, Zhuang QC, Tian LL, Zhang XX (2014) Synthesis and characterization of Fe@Fe2O3 core-shell nanoparticles/graphene anode material for lithium-ion batteries. Electrochim Acta 134:18–27
-
(2014)
Electrochim Acta
, vol.134
, pp. 18-27
-
-
Wu, C.1
Zhang, H.2
Wu, Y.X.3
Zhuang, Q.C.4
Tian, L.L.5
Zhang, X.X.6
-
40
-
-
84897845446
-
A facile hydrothermal route to iron(III) oxide with conductive additives as composite anode for lithium ion batteries
-
Chen G, Rodriguez R, Fei L, Xu Y, Deng SG, Smirnov S, Luo HM (2014) A facile hydrothermal route to iron(III) oxide with conductive additives as composite anode for lithium ion batteries. J Power Sour 259:227–232
-
(2014)
J Power Sour
, vol.259
, pp. 227-232
-
-
Chen, G.1
Rodriguez, R.2
Fei, L.3
Xu, Y.4
Deng, S.G.5
Smirnov, S.6
Luo, H.M.7
-
42
-
-
84893412683
-
4/PPy composite nanospheres as anode for lithium-ion batteries with superior cycling performance
-
4/PPy composite nanospheres as anode for lithium-ion batteries with superior cycling performance. Electrochim Acta 121:428–433
-
(2014)
Electrochim Acta
, vol.121
, pp. 428-433
-
-
Zhao, J.F.1
Zhang, S.C.2
Liu, W.B.3
Du, Z.J.4
Fang, H.5
-
43
-
-
84861446307
-
3 nanorods as a stable, high capacity anode material for Li-ion batteries
-
3 nanorods as a stable, high capacity anode material for Li-ion batteries. J Mater Chem 22:12198–12204
-
(2012)
J Mater Chem
, vol.22
, pp. 12198-12204
-
-
Cherian, C.T.1
Sundaramurthy, J.2
Kalaivani, M.3
Ragupathy, P.4
Kumar, P.S.5
Thavasi, V.6
Reddy, M.V.7
Sow, C.H.8
Mhaisalkar, S.G.9
Ramakrishna, S.10
Chowdari, B.V.R.11
-
44
-
-
78149269109
-
3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries
-
3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J Phys Chem C 114:18753–18761
-
(2010)
J Phys Chem C
, vol.114
, pp. 18753-18761
-
-
Sun, B.1
Horvat, J.2
Kim, H.S.3
Kim, W.-S.4
Ahn, J.5
Wang, G.X.6
-
46
-
-
84887690000
-
3 nanorice as enhanced anode materials for lithium storage
-
3 nanorice as enhanced anode materials for lithium storage. Electrochim Acta 114:779–784
-
(2013)
Electrochim Acta
, vol.114
, pp. 779-784
-
-
Wei, D.H.1
Liang, J.W.2
Zhu, Y.C.3
Zhang, J.J.4
Li, X.N.5
Zhang, K.L.6
Yuan, Z.Q.7
Qian, Y.T.8
-
47
-
-
84908611617
-
Origin of non-SEI related conlombic efficiency loss in carbons tested against Na and Li
-
Lotfabad EM, Kalisvaart P, Kohandehghan A, Karpuzov D, Mitlin D (2014) Origin of non-SEI related conlombic efficiency loss in carbons tested against Na and Li. J Mater Chem A 2:19685–19695
-
(2014)
J Mater Chem A
, vol.2
, pp. 19685-19695
-
-
Lotfabad, E.M.1
Kalisvaart, P.2
Kohandehghan, A.3
Karpuzov, D.4
Mitlin, D.5
-
48
-
-
84886682064
-
Combined surface and electrochemical study of the lithiation/delithiation mechanism of the iron oxide thin-film anode for lithium-ion batteries
-
Tian BB, Swiatowska J, Maurice V, Zanna S, Seyeux A, Klein LH, Marcus P (2013) Combined surface and electrochemical study of the lithiation/delithiation mechanism of the iron oxide thin-film anode for lithium-ion batteries. J Phys Chem C 117:21651–21661
-
(2013)
J Phys Chem C
, vol.117
, pp. 21651-21661
-
-
Tian, B.B.1
Swiatowska, J.2
Maurice, V.3
Zanna, S.4
Seyeux, A.5
Klein, L.H.6
Marcus, P.7
|