메뉴 건너뛰기




Volumn 24, Issue 3, 2015, Pages

A baseline model for software effort estimation

Author keywords

Baseline model; Transformed linear model

Indexed keywords

LIFE CYCLE;

EID: 84930149397     PISSN: 1049331X     EISSN: 15577392     Source Type: Journal    
DOI: 10.1145/2738037     Document Type: Article
Times cited : (103)

References (51)
  • 1
    • 0009755106 scopus 로고
    • Effort estimation in a system development project
    • B. Adrangi and W. Harrison. 1987. Effort estimation in a system development project. J. Syst. Manag. 38, 21-23.
    • (1987) J. Syst. Manag. , vol.38 , pp. 21-23
    • Adrangi, B.1    Harrison, W.2
  • 2
    • 0020844328 scopus 로고
    • Software function, source lines of code, and development effort prediction: A software science validation
    • A. J. Albrecht and J. E. Gaffney. 1983. Software function, source lines of code, and development effort prediction: A software science validation. IEEE Trans. Softw. Engin. SE9, 639-648.
    • (1983) IEEE Trans. Softw. Engin. SE9 , pp. 639-648
    • Albrecht, A.J.1    Gaffney, J.E.2
  • 3
    • 84980395159 scopus 로고    scopus 로고
    • Evolving software effort estimation models using multigene symbolic regression genetic programming
    • S. Aljahdali and A. Sheta. 2013. Evolving software effort estimation models using multigene symbolic regression genetic programming. Int. J. Adv. Res. Artif. Intell. 2, 52-57.
    • (2013) Int. J. Adv. Res. Artif. Intell. , vol.2 , pp. 52-57
    • Aljahdali, S.1    Sheta, A.2
  • 4
    • 84901842485 scopus 로고    scopus 로고
    • A flexible method to estimate the software development effort based on the classification of projects and localization of comparisons
    • V. K. Bardsiri, D. N. Jawawi, S. Z. Hashim, and E. Khatibi. 2014. A flexible method to estimate the software development effort based on the classification of projects and localization of comparisons. Empir. Softw. Engin. 19, 857-884.
    • (2014) Empir. Softw. Engin. , vol.19 , pp. 857-884
    • Bardsiri, V.K.1    Jawawi, D.N.2    Hashim, S.Z.3    Khatibi, E.4
  • 10
    • 84898306025 scopus 로고    scopus 로고
    • Feature subset selection can improve software cost estimation accuracy
    • Z. Chen, T. Menzies, D. Port, and B. Boehm. 2005. Feature subset selection can improve software cost estimation accuracy. ACM SIGSOFT Softw. Engin. Notes 30, 1-6.
    • (2005) ACM SIGSOFT Softw. Engin. Notes , vol.30 , pp. 1-6
    • Chen, Z.1    Menzies, T.2    Port, D.3    Boehm, B.4
  • 11
    • 33847321011 scopus 로고    scopus 로고
    • The adjusted analogy-based software effort estimation based on similarity distances
    • N.-H. Chiu and S.-J. Huang. 2007. The adjusted analogy-based software effort estimation based on similarity distances. J. Syst. Softw. 80, 628-640.
    • (2007) J. Syst. Softw. , vol.80 , pp. 628-640
    • Chiu, N.-H.1    Huang, S.-J.2
  • 12
    • 34548181609 scopus 로고    scopus 로고
    • Difficulty and complexity as factors in software effort estimation
    • F. Collopy. 2007. Difficulty and complexity as factors in software effort estimation. Int. J. Forecast. 23, 3, 469-471.
    • (2007) Int. J. Forecast. , vol.23 , Issue.3 , pp. 469-471
    • Collopy, F.1
  • 13
    • 84859746562 scopus 로고    scopus 로고
    • Data mining techniques for software effort estimation: A comparative study
    • K. Dejaeger, W. Verbeke, D. Martens, and B. Baesens. 2012. Data mining techniques for software effort estimation: A comparative study. IEEE Trans. Softw. Engin. 38, 375-397.
    • (2012) IEEE Trans. Softw. Engin. , vol.38 , pp. 375-397
    • Dejaeger, K.1    Verbeke, W.2    Martens, D.3    Baesens, B.4
  • 16
    • 0031539946 scopus 로고    scopus 로고
    • A comparison of software effort estimation techniques: Using function points with neural networks, case-based reasoning and regression models
    • G. R. Finnie, G. E. Wittig, and J.-M. Desharnais. 1997. A comparison of software effort estimation techniques: Using function points with neural networks, case-based reasoning and regression models. J. Syst. Softw. 39, 281-289.
    • (1997) J. Syst. Softw. , vol.39 , pp. 281-289
    • Finnie, G.R.1    Wittig, G.E.2    Desharnais, J.-M.3
  • 17
    • 0036888053 scopus 로고    scopus 로고
    • Comparison of artificial neural network and regression models for estimating software development effort
    • A. Heiat. 2002. Comparison of artificial neural network and regression models for estimating software development effort. Inf. Softw. Technol. 44, 911-921.
    • (2002) Inf. Softw. Technol. , vol.44 , pp. 911-921
    • Heiat, A.1
  • 19
    • 0034319879 scopus 로고    scopus 로고
    • A comparative study of two software development cost modelling techniques using multi-organizational and company-specific data
    • R. Jeffery, M. Ruhe, and I. Wieczorek. 2000. A comparative study of two software development cost modelling techniques using multi-organizational and company-specific data. Inf. Softw. Technol. 42, 1009-1016.
    • (2000) Inf. Softw. Technol. , vol.42 , pp. 1009-1016
    • Jeffery, R.1    Ruhe, M.2    Wieczorek, I.3
  • 20
    • 0006540633 scopus 로고    scopus 로고
    • Comparing measures of sample skewness and kurtosis
    • D. N. Joanes and C. A. Gill. 1998. Comparing measures of sample skewness and kurtosis. The Statist. 47, 183-189.
    • (1998) The Statist. , vol.47 , pp. 183-189
    • Joanes, D.N.1    Gill, C.A.2
  • 21
    • 33845788381 scopus 로고    scopus 로고
    • A systematic review of software development cost estimation studies
    • M. Jorgensen and M. Shepperd. 2007. A systematic review of software development cost estimation studies. IEEE Trans. Softw. Engin. 33, 1, 33-53.
    • (2007) IEEE Trans. Softw. Engin. , vol.33 , Issue.1 , pp. 33-53
    • Jorgensen, M.1    Shepperd, M.2
  • 22
    • 0000139307 scopus 로고
    • Empirical studies of assumptions that underlie software cost-estimation models
    • B. Kitchenham. 1992. Empirical studies of assumptions that underlie software cost-estimation models. Inf. Softw. Technol. 34, 211-218.
    • (1992) Inf. Softw. Technol. , vol.34 , pp. 211-218
    • Kitchenham, B.1
  • 23
    • 0037081208 scopus 로고    scopus 로고
    • The question of scale economies in software - Why cannot researchers agree?
    • B. Kitchenham. 2002. The question of scale economies in software - Why cannot researchers agree? Inf. Softw. Technol. 44, 13-24.
    • (2002) Inf. Softw. Technol. , vol.44 , pp. 13-24
    • Kitchenham, B.1
  • 25
    • 34247611323 scopus 로고    scopus 로고
    • Cross versus within-company cost estimation studies: A systematic review
    • B. Kitchenham, E. Mendes, and G. Travassos. 2007. Cross versus within-company cost estimation studies: A systematic review. IEEE Trans. Softw. Engin. 33, 316-329.
    • (2007) IEEE Trans. Softw. Engin. , vol.33 , pp. 316-329
    • Kitchenham, B.1    Mendes, E.2    Travassos, G.3
  • 26
    • 0037110428 scopus 로고    scopus 로고
    • An empirical study of maintenance and development estimation accuracy
    • B. Kitchenham, S. L. Pfleeger, B. McColl, and S. Eagan. 2002. An empirical study of maintenance and development estimation accuracy. J. Syst. Softw. 64, 57-77.
    • (2002) J. Syst. Softw. , vol.64 , pp. 57-77
    • Kitchenham, B.1    Pfleeger, S.L.2    McColl, B.3    Eagan, S.4
  • 27
    • 84879923542 scopus 로고    scopus 로고
    • Software effort models should be assessed via leave-one-out validation
    • E. Kocaguneli and T. Menzies. 2013. Software effort models should be assessed via leave-one-out validation. J. Syst. Softw. 86, 1879-1890.
    • (2013) J. Syst. Softw. , vol.86 , pp. 1879-1890
    • Kocaguneli, E.1    Menzies, T.2
  • 28
    • 0037845141 scopus 로고    scopus 로고
    • Combining techniques to optimize effort predictions in software project management
    • S. G. MacDonell and M. J. Shepperd. 2003. Combining techniques to optimize effort predictions in software project management. J. Syst. Softw. 66, 91-98.
    • (2003) J. Syst. Softw. , vol.66 , pp. 91-98
    • MacDonell, S.G.1    Shepperd, M.J.2
  • 30
    • 84978361869 scopus 로고    scopus 로고
    • An analysis of data sets used to train and validate cost prediction systems
    • Notes
    • C. Mair, M. Shepperd, and M. Jorgensen. 2005. An analysis of data sets used to train and validate cost prediction systems. ACM SIGSOFT Softw. Engin. Notes 30, 1-6.
    • (2005) ACM SIGSOFT Softw. Engin , vol.30 , pp. 1-6
    • Mair, C.1    Shepperd, M.2    Jorgensen, M.3
  • 33
    • 84857372714 scopus 로고    scopus 로고
    • Special issue on repeatable results in software engineering prediction
    • T. Menzies and M. Shepperd. 2012. Special issue on repeatable results in software engineering prediction. Empir. Softw. Engin. 17, 1-17.
    • (2012) Empir. Softw. Engin. , vol.17 , pp. 1-17
    • Menzies, T.1    Shepperd, M.2
  • 34
    • 84884946446 scopus 로고    scopus 로고
    • Software effort estimation as a multiobjective learning problem
    • L. Minku and X. Yao. 2013. Software effort estimation as a multiobjective learning problem. ACM Trans. Softw. Engin. Methodol. 22, 4.
    • (2013) ACM Trans. Softw. Engin. Methodol. , vol.22 , pp. 4
    • Minku, L.1    Yao, X.2
  • 35
    • 84857374517 scopus 로고    scopus 로고
    • A permutation test based on regression error characteristic curves for software cost estimation models
    • N. Mittas and L. Angelis. 2012. A permutation test based on regression error characteristic curves for software cost estimation models. Empir. Softw. Engin. 17, 34-61.
    • (2012) Empir. Softw. Engin. , vol.17 , pp. 34-61
    • Mittas, N.1    Angelis, L.2
  • 36
    • 84922596154 scopus 로고    scopus 로고
    • A framework for comparing multiple cost estimation methods using an automated visualization toolkit
    • N. Mittas, I. Mamalikidis, and L. Angelis. 2015. A framework for comparing multiple cost estimation methods using an automated visualization toolkit. Inf. Softw. Technol. 57, 310-328.
    • (2015) Inf. Softw. Technol. , vol.57 , pp. 310-328
    • Mittas, N.1    Mamalikidis, I.2    Angelis, L.3
  • 37
    • 84857358660 scopus 로고    scopus 로고
    • Validity and reliability of evaluation procedures in comparative studies of effort prediction models
    • I. Myrtveit and E. Stensrud. 2012. Validity and reliability of evaluation procedures in comparative studies of effort prediction models. Empir. Softw. Engin. 17, 23-32.
    • (2012) Empir. Softw. Engin. , vol.17 , pp. 23-32
    • Myrtveit, I.1    Stensrud, E.2
  • 38
    • 22944440671 scopus 로고    scopus 로고
    • Reliability and validity in comparative studies of software prediction models
    • I. Myrtveit, E. Stensrud, and M. Shepperd. 2005. Reliability and validity in comparative studies of software prediction models. IEEE Trans. Softw. Engin. 31, 380-391.
    • (2005) IEEE Trans. Softw. Engin. , vol.31 , pp. 380-391
    • Myrtveit, I.1    Stensrud, E.2    Shepperd, M.3
  • 41
    • 44949093510 scopus 로고    scopus 로고
    • An empirical validation of a neural network model for software effort estimation
    • H. Park and S. Baek. 2008. An empirical validation of a neural network model for software effort estimation. Expert Syst. Appl. 35, 929-936.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 929-936
    • Park, H.1    Baek, S.2
  • 43
    • 0030814873 scopus 로고    scopus 로고
    • Software cost estimation using an Albus perceptron (CMAC)
    • B. Samson, D. Ellison, and P. Dugard. 1997. Software cost estimation using an Albus perceptron (CMAC). Inf. Softw. Technol. 39, 55-60.
    • (1997) Inf. Softw. Technol. , vol.39 , pp. 55-60
    • Samson, B.1    Ellison, D.2    Dugard, P.3
  • 44
    • 0035506767 scopus 로고    scopus 로고
    • Comparing software prediction techniques using simulation
    • M. Shepperd and G. Kadoda. 2001. Comparing software prediction techniques using simulation. IEEE Trans. Softw. Engin. 27, 1014-1021.
    • (2001) IEEE Trans. Softw. Engin. , vol.27 , pp. 1014-1021
    • Shepperd, M.1    Kadoda, G.2
  • 45
    • 84861556186 scopus 로고    scopus 로고
    • Evaluating prediction systems in software project estimation
    • M. Shepperd and S. G. MacDonell. 2012. Evaluating prediction systems in software project estimation. Inf. Softw. Technol. 54, 820-827.
    • (2012) Inf. Softw. Technol. , vol.54 , pp. 820-827
    • Shepperd, M.1    MacDonell, S.G.2
  • 46
    • 0031268094 scopus 로고    scopus 로고
    • Estimating software project effort using analogies
    • M. Shepperd and C. Schofield. 1997. Estimating software project effort using analogies. IEEE Trans. Softw. Engin. 23, 736-743.
    • (1997) IEEE Trans. Softw. Engin. , vol.23 , pp. 736-743
    • Shepperd, M.1    Schofield, C.2
  • 49
    • 84857374320 scopus 로고    scopus 로고
    • On the dataset shift problem in software engineering prediction models
    • B. Turhan. 2012. On the dataset shift problem in software engineering prediction models. Empir. Softw. Engin. 17, 62-74.
    • (2012) Empir. Softw. Engin. , vol.17 , pp. 62-74
    • Turhan, B.1
  • 51
    • 0031187569 scopus 로고    scopus 로고
    • Estimating software development effort with connectionist models
    • G. Wittig and G. Finnie. 1997. Estimating software development effort with connectionist models. Inf. Softw. Technol. 39, 469-476.
    • (1997) Inf. Softw. Technol. , vol.39 , pp. 469-476
    • Wittig, G.1    Finnie, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.