메뉴 건너뛰기




Volumn 24, Issue 2, 2015, Pages 386-416

The exact and near-exact distributions of the main likelihood ratio test statistics used in the complex multivariate normal setting

Author keywords

Covariance matrix; Equality of covariance matrices; Equality of mean vectors; Expected value matrix; Fourier transforms; Generalized integer gamma (GIG) distribution; Generalized near integer gamma (GNIG) distribution; Independence; Mixtures; Sphericity; Statistical distributions (distribution functions)

Indexed keywords


EID: 84929841661     PISSN: 11330686     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11749-014-0418-y     Document Type: Article
Times cited : (7)

References (32)
  • 2
    • 0000821797 scopus 로고
    • A general distribution theory for a class of likelihood criteria
    • Box GEP (1949) A general distribution theory for a class of likelihood criteria. Biometrika 36:317–346
    • (1949) Biometrika , vol.36 , pp. 317-346
    • Box, G.E.P.1
  • 4
    • 0003688497 scopus 로고
    • Handbook of statistics. Time series in frequency domain
    • North Holland, Amsterdam
    • Brillinger DR, Krishnaiah PR (eds) (1982) Handbook of statistics. Time series in frequency domain, vol 2. North Holland, Amsterdam
    • (1982) vol 2
    • Brillinger, D.R.1    Krishnaiah, P.R.2
  • 5
    • 0040086381 scopus 로고    scopus 로고
    • The generalized integer gamma distribution—a basis for distributions in multivariate statistics
    • Coelho CA (1998) The generalized integer gamma distribution—a basis for distributions in multivariate statistics. J Multivar Anal 64:86–102
    • (1998) J Multivar Anal , vol.64 , pp. 86-102
    • Coelho, C.A.1
  • 6
    • 62749177988 scopus 로고    scopus 로고
    • The advantage of decomposing elaborate hypotheses on covariance matrices into conditionally independent hypotheses in building near-exact distributions for the test statistics
    • Coelho CA, Marques FJ (2009) The advantage of decomposing elaborate hypotheses on covariance matrices into conditionally independent hypotheses in building near-exact distributions for the test statistics. Linear Algebra Appl 430:2592–2606
    • (2009) Linear Algebra Appl , vol.430 , pp. 2592-2606
    • Coelho, C.A.1    Marques, F.J.2
  • 7
    • 84868346841 scopus 로고    scopus 로고
    • Near-exact distributions for the likelihood ratio test statistic to test equality of several variance–covariance matrices in elliptically contoured distributions
    • Coelho CA, Marques FJ (2012) Near-exact distributions for the likelihood ratio test statistic to test equality of several variance–covariance matrices in elliptically contoured distributions. Comput Stat 27:627–659
    • (2012) Comput Stat , vol.27 , pp. 627-659
    • Coelho, C.A.1    Marques, F.J.2
  • 8
    • 85018094137 scopus 로고    scopus 로고
    • Multivariate analysis of polarimetric SAR images. In: LINSTAT’12-international conference trends and perspectives in linear statistical inference and IWMS’12–21st international workshop on matrices and statistics. Abstract Book
    • Conradsen K (2012) Multivariate analysis of polarimetric SAR images. In: LINSTAT’12-international conference trends and perspectives in linear statistical inference and IWMS’12–21st international workshop on matrices and statistics. Abstract Book, pp 87–88
    • (2012) pp 87–88
    • Conradsen, K.1
  • 9
    • 0037243887 scopus 로고    scopus 로고
    • A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data
    • Conradsen K, Nielsen AA, Schou J, Skiver H (2003) A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data. IEEE Trans Geosci Remote Sens 41:4–19
    • (2003) IEEE Trans Geosci Remote Sens , vol.41 , pp. 4-19
    • Conradsen, K.1    Nielsen, A.A.2    Schou, J.3    Skiver, H.4
  • 10
    • 0006291137 scopus 로고
    • Asymptotic distributions of the likelihood ratio test statistics for covariance structures of the complex multivariate normal distributions
    • Fang C, Krishnaiah PR, Nagarsenker BN (1982) Asymptotic distributions of the likelihood ratio test statistics for covariance structures of the complex multivariate normal distributions. J Multivar Anal 12:597–611
    • (1982) J Multivar Anal , vol.12 , pp. 597-611
    • Fang, C.1    Krishnaiah, P.R.2    Nagarsenker, B.N.3
  • 11
    • 0001013602 scopus 로고
    • Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)
    • Goodman NR (1963a) Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction). Ann Math Stat 34:152–177
    • (1963) Ann Math Stat , vol.34 , pp. 152-177
    • Goodman, N.R.1
  • 12
    • 0001240616 scopus 로고
    • The distribution of the determinant of a complex Wishart distributed matrix
    • Goodman NR (1963b) The distribution of the determinant of a complex Wishart distributed matrix. Ann Math Stat 34:178–180
    • (1963) Ann Math Stat , vol.34 , pp. 178-180
    • Goodman, N.R.1
  • 13
    • 51649180327 scopus 로고
    • Distribution of Wilks’ likelihood-ratio criterion in the complex case
    • Gupta AK (1971) Distribution of Wilks’ likelihood-ratio criterion in the complex case. Ann Inst Stat Math 23:77–87
    • (1971) Ann Inst Stat Math , vol.23 , pp. 77-87
    • Gupta, A.K.1
  • 14
    • 79951680661 scopus 로고
    • Nonnull distribution of Wilks’ statistic for MANOVA in the complex case
    • Gupta AK (1976) Nonnull distribution of Wilks’ statistic for MANOVA in the complex case. Commun Stat Simul Comput 5:177–188
    • (1976) Commun Stat Simul Comput , vol.5 , pp. 177-188
    • Gupta, A.K.1
  • 15
    • 84929834539 scopus 로고
    • Nonnull distributions of Wilks’ Lambda in the complex case
    • Gupta AK, Rathie PN (1983) Nonnull distributions of Wilks’ Lambda in the complex case. Statistica 43:445–450
    • (1983) Statistica , vol.43 , pp. 445-450
    • Gupta, A.K.1    Rathie, P.N.2
  • 16
    • 0039317496 scopus 로고
    • Covariance hypotheses which are linear in both the covariance and the inverse covariance
    • Jensen ST (1988) Covariance hypotheses which are linear in both the covariance and the inverse covariance. Ann Stat 16:302–322
    • (1988) Ann Stat , vol.16 , pp. 302-322
    • Jensen, S.T.1
  • 17
    • 0002227956 scopus 로고
    • Classical statistical analysis based on a certain multivariate complex Gaussian distribution
    • Khatri CG (1965) Classical statistical analysis based on a certain multivariate complex Gaussian distribution. Ann Math Stat 36:98–114
    • (1965) Ann Math Stat , vol.36 , pp. 98-114
    • Khatri, C.G.1
  • 18
    • 0017150904 scopus 로고
    • The distributions of the likelihood ratio statistics for tests of certain covariance structures of complex multivariate normal populations
    • Krishnaiah PR, Lee JC, Chang TC (1976) The distributions of the likelihood ratio statistics for tests of certain covariance structures of complex multivariate normal populations. Biometrika 63:543–549
    • (1976) Biometrika , vol.63 , pp. 543-549
    • Krishnaiah, P.R.1    Lee, J.C.2    Chang, T.C.3
  • 20
    • 79955784230 scopus 로고    scopus 로고
    • A general near-exact distribution theory for the most common likelihood ratio test statistics used in multivariate analysis
    • Marques FJ, Coelho CA, Arnold BC (2011) A general near-exact distribution theory for the most common likelihood ratio test statistics used in multivariate analysis. Test 20:180–203
    • (2011) Test , vol.20 , pp. 180-203
    • Marques, F.J.1    Coelho, C.A.2    Arnold, B.C.3
  • 21
    • 51649187156 scopus 로고
    • A few remarks about some recent articles on the exact distributions of multivariate test criteria: I
    • Mathai AM (1973) A few remarks about some recent articles on the exact distributions of multivariate test criteria: I. Ann Inst Stat Math 25:557–566
    • (1973) Ann Inst Stat Math , vol.25 , pp. 557-566
    • Mathai, A.M.1
  • 22
    • 84968953891 scopus 로고
    • Distribution of LRC for testing sphericity of a complex multivariate Gaussian model
    • Nagar DK, Jain SK, Gupta AK (1985) Distribution of LRC for testing sphericity of a complex multivariate Gaussian model. Int J Math Math Sci 8:555–562
    • (1985) Int J Math Math Sci , vol.8 , pp. 555-562
    • Nagar, D.K.1    Jain, S.K.2    Gupta, A.K.3
  • 23
    • 37849051417 scopus 로고
    • Exact distribution of sphericity criterion in the complex case and its percentage points
    • Nagarsenker BN, Das MM (1975) Exact distribution of sphericity criterion in the complex case and its percentage points. Commun Stat 4:363–374
    • (1975) Commun Stat , vol.4 , pp. 363-374
    • Nagarsenker, B.N.1    Das, M.M.2
  • 24
    • 84857623924 scopus 로고
    • Distribution of the likelihood ratio statistic for testing sphericity structure for a complex normal covariance matrix
    • Nagarsenker BN, Nagarsenker PB (1981) Distribution of the likelihood ratio statistic for testing sphericity structure for a complex normal covariance matrix. Sankhya Ser B 43:352–359
    • (1981) Sankhya Ser B , vol.43 , pp. 352-359
    • Nagarsenker, B.N.1    Nagarsenker, P.B.2
  • 25
    • 0141890986 scopus 로고    scopus 로고
    • Application of the complex multivariate normal distribution to crystallographic methods with insights into multiple isomorphous replacement phasing
    • Pannu NS, Coy AJ, Read J (2003) Application of the complex multivariate normal distribution to crystallographic methods with insights into multiple isomorphous replacement phasing. Acta Crystallogr D Biol Crystallogr 59:1801–1808
    • (2003) Acta Crystallogr D Biol Crystallogr , vol.59 , pp. 1801-1808
    • Pannu, N.S.1    Coy, A.J.2    Read, J.3
  • 26
    • 82655180264 scopus 로고
    • Some distribution problems in the multivariate complex Gaussian case
    • Pillai KCS, Jouris GM (1971) Some distribution problems in the multivariate complex Gaussian case. Ann Math Stat 42:517–525
    • (1971) Ann Math Stat , vol.42 , pp. 517-525
    • Pillai, K.C.S.1    Jouris, G.M.2
  • 27
    • 27344454705 scopus 로고
    • On the distribution of the sphericity test criterion in classical and complex normal populations having unknown covariance matrices
    • Pillai KCS, Nagarsenker BN (1971) On the distribution of the sphericity test criterion in classical and complex normal populations having unknown covariance matrices. Ann Math Stat 42:764–767
    • (1971) Ann Math Stat , vol.42 , pp. 764-767
    • Pillai, K.C.S.1    Nagarsenker, B.N.2
  • 29
    • 84985609144 scopus 로고
    • Exact distribution of certain general test statistics in multivariate analysis
    • Tang J, Gupta AK (1986) Exact distribution of certain general test statistics in multivariate analysis. Aust J Stat 28:107–114
    • (1986) Aust J Stat , vol.28 , pp. 107-114
    • Tang, J.1    Gupta, A.K.2
  • 30
    • 84972505227 scopus 로고
    • The asymptotic expansion of a ratio of gamma functions
    • Tricomi FG, Erdélyi A (1951) The asymptotic expansion of a ratio of gamma functions. Pac J Math 1:133–142
    • (1951) Pac J Math , vol.1 , pp. 133-142
    • Tricomi, F.G.1    Erdélyi, A.2
  • 31
    • 0001072343 scopus 로고
    • The characteristic function of Hermitian quadratic forms in complex normal variables
    • Turin GL (1960) The characteristic function of Hermitian quadratic forms in complex normal variables. Biometrika 47:199–201
    • (1960) Biometrika , vol.47 , pp. 199-201
    • Turin, G.L.1
  • 32
    • 0001537526 scopus 로고
    • The multivariate distribution of complex normal variables
    • Wooding RA (1956) The multivariate distribution of complex normal variables. Biometrika 43:212–215
    • (1956) Biometrika , vol.43 , pp. 212-215
    • Wooding, R.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.