메뉴 건너뛰기




Volumn 116, Issue , 2015, Pages 141-151

Design of fractional adaptive strategy for input nonlinear Box-Jenkins systems

Author keywords

Adaptive filtering; Box Jenkins model; Fractional LMS; Input nonlinear systems; Kernel LMS; Parameter estimation; Volterra LMS

Indexed keywords

ADAPTIVE ALGORITHMS; ADAPTIVE FILTERING; ALGORITHMS; IDENTIFICATION (CONTROL SYSTEMS); NONLINEAR ANALYSIS; SIGNAL PROCESSING;

EID: 84929619569     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2015.04.015     Document Type: Article
Times cited : (47)

References (56)
  • 1
    • 84887363358 scopus 로고    scopus 로고
    • Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems
    • F. Ding Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems Signal Process. 97 2014 31 39
    • (2014) Signal Process. , vol.97 , pp. 31-39
    • Ding, F.1
  • 2
    • 84872619148 scopus 로고    scopus 로고
    • Two-stage least squares based iterative estimation algorithm for CARARMA system modeling
    • F. Ding Two-stage least squares based iterative estimation algorithm for CARARMA system modeling Appl. Math. Model. 37 7 2013 4798 4808
    • (2013) Appl. Math. Model. , vol.37 , Issue.7 , pp. 4798-4808
    • Ding, F.1
  • 3
    • 84887623184 scopus 로고    scopus 로고
    • Combined state and least squares parameter estimation algorithms for dynamic systems
    • F. Ding Combined state and least squares parameter estimation algorithms for dynamic systems Appl. Math. Model. 38 1 2014 403 412
    • (2014) Appl. Math. Model. , vol.38 , Issue.1 , pp. 403-412
    • Ding, F.1
  • 4
    • 84898620668 scopus 로고    scopus 로고
    • State filtering and parameter estimation for state space systems with scarce measurements
    • F. Ding State filtering and parameter estimation for state space systems with scarce measurements Signal Process. 104 2014 369 380
    • (2014) Signal Process. , vol.104 , pp. 369-380
    • Ding, F.1
  • 5
    • 22344449915 scopus 로고    scopus 로고
    • Identification of Hammerstein nonlinear ARMAX systems
    • F. Ding, and T. Chen Identification of Hammerstein nonlinear ARMAX systems Automatica 41 9 2005 1479 1489
    • (2005) Automatica , vol.41 , Issue.9 , pp. 1479-1489
    • Ding, F.1    Chen, T.2
  • 6
    • 33745915835 scopus 로고    scopus 로고
    • Gradient-based identification methods for Hammerstein nonlinear ARMAX models
    • F. Ding, Y. Shi, and T. Chen Gradient-based identification methods for Hammerstein nonlinear ARMAX models Nonlinear Dyn. 45 1 2006 31 43
    • (2006) Nonlinear Dyn. , vol.45 , Issue.1 , pp. 31-43
    • Ding, F.1    Shi, Y.2    Chen, T.3
  • 7
    • 84899058010 scopus 로고    scopus 로고
    • Least squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary model
    • H. Hu, and R. Ding Least squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary model Nonlinear Dyn. 76 1 2014 777 784
    • (2014) Nonlinear Dyn. , vol.76 , Issue.1 , pp. 777-784
    • Hu, H.1    Ding, R.2
  • 8
    • 33947233313 scopus 로고    scopus 로고
    • Auxiliary model-based least-squares identification methods for Hammerstein output-error systems
    • F. Ding, Y. Shi, and T. Chen Auxiliary model-based least-squares identification methods for Hammerstein output-error systems Syst. Control Lett. 56 5 2007 373 380
    • (2007) Syst. Control Lett. , vol.56 , Issue.5 , pp. 373-380
    • Ding, F.1    Shi, Y.2    Chen, T.3
  • 9
    • 84872587309 scopus 로고    scopus 로고
    • Decomposition based fast least squares algorithm for output error systems
    • F. Ding Decomposition based fast least squares algorithm for output error systems Signal Process. 93 5 2013 1235 1242
    • (2013) Signal Process. , vol.93 , Issue.5 , pp. 1235-1242
    • Ding, F.1
  • 10
    • 77949486667 scopus 로고    scopus 로고
    • Gradient based and least-squares based iterative identification methods for OE and OEMA systems
    • F. Ding, P.X. Liu, and G. Liu Gradient based and least-squares based iterative identification methods for OE and OEMA systems Digit. Signal Process. 20 3 2010 664 677
    • (2010) Digit. Signal Process. , vol.20 , Issue.3 , pp. 664-677
    • Ding, F.1    Liu, P.X.2    Liu, G.3
  • 11
    • 79551473739 scopus 로고    scopus 로고
    • Least squares based and gradient based iterative identification for Wiener nonlinear systems
    • D. Wang, and F. Ding Least squares based and gradient based iterative identification for Wiener nonlinear systems Signal Process. 91 5 2011 1182 1189
    • (2011) Signal Process. , vol.91 , Issue.5 , pp. 1182-1189
    • Wang, D.1    Ding, F.2
  • 12
    • 84870056674 scopus 로고    scopus 로고
    • Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle
    • D. Wang, F. Ding, and Y. Chu Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle Inf. Sci. 222 2013 203 212
    • (2013) Inf. Sci. , vol.222 , pp. 203-212
    • Wang, D.1    Ding, F.2    Chu, Y.3
  • 13
    • 77949486033 scopus 로고    scopus 로고
    • Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems
    • D. Wang, and F. Ding Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems Digit. Signal Process. 20 3 2010 750 762
    • (2010) Digit. Signal Process. , vol.20 , Issue.3 , pp. 750-762
    • Wang, D.1    Ding, F.2
  • 14
    • 77953128333 scopus 로고    scopus 로고
    • Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems
    • D. Wang Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems Math. Comput. Model. 52 1 2010 309 317
    • (2010) Math. Comput. Model. , vol.52 , Issue.1 , pp. 309-317
    • Wang, D.1
  • 15
    • 77954174851 scopus 로고    scopus 로고
    • Least squares based iterative algorithms for identifying Box-Jenkins models with finite measurement data
    • Y. Liu, D. Wang, and F. Ding Least squares based iterative algorithms for identifying Box-Jenkins models with finite measurement data Digit. Signal Process. 20 5 2010 1458 1467
    • (2010) Digit. Signal Process. , vol.20 , Issue.5 , pp. 1458-1467
    • Liu, Y.1    Wang, D.2    Ding, F.3
  • 16
    • 77957294731 scopus 로고    scopus 로고
    • Gradient-based iterative parameter estimation for Box-Jenkins systems
    • D. Wang, G. Yang, and R. Ding Gradient-based iterative parameter estimation for Box-Jenkins systems Comput. Math. Appl. 60 5 2010 1200 1208
    • (2010) Comput. Math. Appl. , vol.60 , Issue.5 , pp. 1200-1208
    • Wang, D.1    Yang, G.2    Ding, R.3
  • 17
    • 3843087260 scopus 로고    scopus 로고
    • Combined parameter and output estimation of dual-rate systems using an auxiliary model
    • F. Ding, and T. Chen Combined parameter and output estimation of dual-rate systems using an auxiliary model Automatica 40 10 2004 1739 1748
    • (2004) Automatica , vol.40 , Issue.10 , pp. 1739-1748
    • Ding, F.1    Chen, T.2
  • 18
    • 77954287475 scopus 로고    scopus 로고
    • Least squares parameter estimation for systems with irregularly missing data
    • F. Ding, and J. Ding Least squares parameter estimation for systems with irregularly missing data Intl. J. Adapt. Control Signal Process. 24 7 2010 540 553
    • (2010) Intl. J. Adapt. Control Signal Process. , vol.24 , Issue.7 , pp. 540-553
    • Ding, F.1    Ding, J.2
  • 19
    • 25844444580 scopus 로고    scopus 로고
    • Parameter estimation of dual-rate stochastic systems by using an output error method
    • F. Ding, and T. Chen Parameter estimation of dual-rate stochastic systems by using an output error method IEEE Trans. Autom. Control 50 9 2005 1436 1441
    • (2005) IEEE Trans. Autom. Control , vol.50 , Issue.9 , pp. 1436-1441
    • Ding, F.1    Chen, T.2
  • 20
    • 79960912040 scopus 로고    scopus 로고
    • Parameter estimation with scarce measurements
    • F. Ding, G. Liu, and X.P. Liu Parameter estimation with scarce measurements Automatica 47 8 2011 1646 1655
    • (2011) Automatica , vol.47 , Issue.8 , pp. 1646-1655
    • Ding, F.1    Liu, G.2    Liu, X.P.3
  • 21
    • 84880147252 scopus 로고    scopus 로고
    • Two-stage parameter estimation algorithms for Box-Jenkins systems
    • F. Ding, and H. Duan Two-stage parameter estimation algorithms for Box-Jenkins systems IET Signal Process. 7 8 2013 646 654
    • (2013) IET Signal Process. , vol.7 , Issue.8 , pp. 646-654
    • Ding, F.1    Duan, H.2
  • 22
    • 83555161557 scopus 로고    scopus 로고
    • Hierarchical least squares based iterative estimation algorithm for multivariable Box-Jenkins-like systems using the auxiliary model
    • Z. Zhang, J. Jia, and R. Ding Hierarchical least squares based iterative estimation algorithm for multivariable Box-Jenkins-like systems using the auxiliary model Appl. Math. Comput. 218 9 2012 5580 5587
    • (2012) Appl. Math. Comput. , vol.218 , Issue.9 , pp. 5580-5587
    • Zhang, Z.1    Jia, J.2    Ding, R.3
  • 23
    • 78649534762 scopus 로고    scopus 로고
    • Multi-innovation generalized extended stochastic gradient algorithm for multi-input multi-output nonlinear Box- Jenkins systems based on the auxiliary model
    • Kang Li, Springer Berlin
    • J. Chen, and X.P. Wang Multi-innovation generalized extended stochastic gradient algorithm for multi-input multi-output nonlinear Box- Jenkins systems based on the auxiliary model Kang Li, Lecture Notes in Computer Science 2010 Springer Berlin 136 146
    • (2010) Lecture Notes in Computer Science , pp. 136-146
    • Chen, J.1    Wang, X.P.2
  • 24
    • 84868549496 scopus 로고    scopus 로고
    • Least squares and stochastic gradient parameter estimation for multivariable nonlinear Box-Jenkins models based on the auxiliary model and multi-innovation theory
    • J. Chen, and F. Ding Least squares and stochastic gradient parameter estimation for multivariable nonlinear Box-Jenkins models based on the auxiliary model and multi-innovation theory Eng. Comput. 29 8 2012 907 921
    • (2012) Eng. Comput. , vol.29 , Issue.8 , pp. 907-921
    • Chen, J.1    Ding, F.2
  • 25
    • 84878554517 scopus 로고    scopus 로고
    • Gradient-based parameter estimation for input nonlinear systems with ARMA noises based on the auxiliary model
    • J. Chen, Y. Zhang, and R. Ding Gradient-based parameter estimation for input nonlinear systems with ARMA noises based on the auxiliary model Nonlinear Dyn. 7 4 2013 865 871
    • (2013) Nonlinear Dyn. , vol.7 , Issue.4 , pp. 865-871
    • Chen, J.1    Zhang, Y.2    Ding, R.3
  • 26
    • 85027943867 scopus 로고    scopus 로고
    • Identifying a non-commensurable fractional transfer function from a frequency response
    • D. Valério, and I. Tejado Identifying a non-commensurable fractional transfer function from a frequency response Signal Process 107 2015 254 264 10.1016/j.sigpro.2014.03.001
    • (2015) Signal Process , vol.107 , pp. 254-264
    • Valério, D.1    Tejado, I.2
  • 27
    • 84855567178 scopus 로고    scopus 로고
    • Design of linear phase FIR filters using fractional derivative constraints
    • C.-C. Tseng, and S.-L. Lee Design of linear phase FIR filters using fractional derivative constraints Signal Process. 92 5 2012 1317 1327
    • (2012) Signal Process. , vol.92 , Issue.5 , pp. 1317-1327
    • Tseng, C.-C.1    Lee, S.-L.2
  • 28
    • 84884470185 scopus 로고    scopus 로고
    • Designs of fractional derivative constrained 1-D and 2-D FIR filters in the complex domain
    • C.-C. Tseng, and S.-L. Lee Designs of fractional derivative constrained 1-D and 2-D FIR filters in the complex domain Signal Process. 95 2014 111 125
    • (2014) Signal Process. , vol.95 , pp. 111-125
    • Tseng, C.-C.1    Lee, S.-L.2
  • 29
    • 84890487726 scopus 로고    scopus 로고
    • Fractional zero-phase filtering based on the Riemann-Liouville integral
    • J. Wang Fractional zero-phase filtering based on the Riemann-Liouville integral Signal Process. 98 2014 150 157
    • (2014) Signal Process. , vol.98 , pp. 150-157
    • Wang, J.1
  • 30
    • 84922423388 scopus 로고    scopus 로고
    • Fractional order describing functions
    • J.A.T. Machado Fractional order describing functions Signal Process 107 2015 389 394 10.1016/j.sigpro.2014.05.012
    • (2015) Signal Process , vol.107 , pp. 389-394
    • Machado, J.A.T.1
  • 31
    • 85027948299 scopus 로고    scopus 로고
    • A generalized power series and its application in the inversion of transfer functions
    • M.D. Ortigueira A generalized power series and its application in the inversion of transfer functions Signal Process 107 2015 238 245 10.1016/j.sigpro.2014.04.018
    • (2015) Signal Process , vol.107 , pp. 238-245
    • Ortigueira, M.D.1
  • 32
    • 0033872505 scopus 로고    scopus 로고
    • Introduction to fractional signal processing, Part1: continuous-time systems
    • M.D. Ortigueira Introduction to fractional signal processing, Part1: continuous-time systems IEE Proc. Vis. Image Signal Process. 147 1 2000 62 70
    • (2000) IEE Proc. Vis. Image Signal Process. , vol.147 , Issue.1 , pp. 62-70
    • Ortigueira, M.D.1
  • 33
    • 0033899008 scopus 로고    scopus 로고
    • Introduction to fractional Signal Processing, Part2: discrete-time systems
    • M.D. Ortigueira Introduction to fractional Signal Processing, Part2: discrete-time systems IEE Proc. Vis. Image Signal Process 147 1 2000 71 78
    • (2000) IEE Proc. Vis. Image Signal Process , vol.147 , Issue.1 , pp. 71-78
    • Ortigueira, M.D.1
  • 34
    • 0141892682 scopus 로고    scopus 로고
    • Fractional signal processing and applications
    • M.D. Ortigueira, and J.A.T. Machado Fractional signal processing and applications Signal Process. 83 11 2003 2285 2286
    • (2003) Signal Process. , vol.83 , Issue.11 , pp. 2285-2286
    • Ortigueira, M.D.1    Machado, J.A.T.2
  • 35
    • 33745967716 scopus 로고    scopus 로고
    • Fractional calculus applications in signals and systems
    • M.D. Ortigueira, and J.A.T. Machado Fractional calculus applications in signals and systems Signal Process. 86 10 2006 2503 2504
    • (2006) Signal Process. , vol.86 , Issue.10 , pp. 2503-2504
    • Ortigueira, M.D.1    Machado, J.A.T.2
  • 36
    • 70349280469 scopus 로고    scopus 로고
    • A modified least mean square algorithm using fractional derivative and its application to system identification
    • R.M.A. Zahoor, and I.M. Qureshi A modified least mean square algorithm using fractional derivative and its application to system identification Eur. J. Sci. Res. 35 1 2009 14 21
    • (2009) Eur. J. Sci. Res. , vol.35 , Issue.1 , pp. 14-21
    • Zahoor, R.M.A.1    Qureshi, I.M.2
  • 37
    • 84903786121 scopus 로고    scopus 로고
    • Fractional normalised filtered-error least mean squares algorithm for application in active noise control systems
    • S.M. Shah, R. Samar, M.A.Z. Raja, and J.A. Chambers Fractional normalised filtered-error least mean squares algorithm for application in active noise control systems Electron Lett. 50 2014 973 975 10.1049/el.2014.1275
    • (2014) Electron Lett. , vol.50 , pp. 973-975
    • Shah, S.M.1    Samar, R.2    Raja, M.A.Z.3    Chambers, J.A.4
  • 38
    • 84919491538 scopus 로고    scopus 로고
    • Adaptive strategies for parameter estimation of Box-Jenkins systems
    • M.A.Z. Raja, and N.I. Chaudhary Adaptive strategies for parameter estimation of Box-Jenkins systems IET Signal Process. 8 9 2014 968 980 10.1049/iet-spr.2013.0438
    • (2014) IET Signal Process. , vol.8 , Issue.9 , pp. 968-980
    • Raja, M.A.Z.1    Chaudhary, N.I.2
  • 39
    • 84880320130 scopus 로고    scopus 로고
    • Identification of input nonlinear control autoregressive systems using fractional Signal Processing approach
    • ID 467276
    • N.I. Chaudhary, M.A.Z. Raja, J.A. Khan, and M.S. Aslam Identification of input nonlinear control autoregressive systems using fractional Signal Processing approach Sci. World J. 2013 2013 1 13 ID 467276
    • (2013) Sci. World J. , vol.2013 , pp. 1-13
    • Chaudhary, N.I.1    Raja, M.A.Z.2    Khan, J.A.3    Aslam, M.S.4
  • 40
    • 84924042321 scopus 로고    scopus 로고
    • Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms
    • N.I. Chaudhary, and M.A.Z. Raja Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms Nonlinear Dyn 79 2015 1385 1397 10.1007/s11071-014-1748-8
    • (2015) Nonlinear Dyn , vol.79 , pp. 1385-1397
    • Chaudhary, N.I.1    Raja, M.A.Z.2
  • 41
    • 85027939449 scopus 로고    scopus 로고
    • Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems
    • M.A.Z. Raja, and N.I. Chaudhary Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems Signal Process 107 2015 327 339 10.1016/j.sigpro.2014.06.015
    • (2015) Signal Process , vol.107 , pp. 327-339
    • Raja, M.A.Z.1    Chaudhary, N.I.2
  • 42
    • 85028153093 scopus 로고    scopus 로고
    • A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional signal processing approach
    • M.S. Aslam, and M.A.Z. Raja A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional signal processing approach Signal Process 107 2015 433 443 10.1016/j.sigpro.2014.04.012
    • (2015) Signal Process , vol.107 , pp. 433-443
    • Aslam, M.S.1    Raja, M.A.Z.2
  • 44
    • 83955161221 scopus 로고    scopus 로고
    • Estimating second-order Volterra system parameters from noisy measurements based on an LMS variant or an errors-in-variables method
    • Z. Sigrist, E. Grivel, and B. Alcoverro Estimating second-order Volterra system parameters from noisy measurements based on an LMS variant or an errors-in-variables method Signal Process. 92 4 2012 1010 1020
    • (2012) Signal Process. , vol.92 , Issue.4 , pp. 1010-1020
    • Sigrist, Z.1    Grivel, E.2    Alcoverro, B.3
  • 45
    • 0035425075 scopus 로고    scopus 로고
    • Adaptive Volterra filters for active control of nonlinear noise processes
    • L. Tan, and J. Jiang Adaptive Volterra filters for active control of nonlinear noise processes IEEE Trans. Signal Process. 49 2 2001 1667 1676
    • (2001) IEEE Trans. Signal Process. , vol.49 , Issue.2 , pp. 1667-1676
    • Tan, L.1    Jiang, J.2
  • 49
    • 56049114663 scopus 로고    scopus 로고
    • Kernel least mean square algorithm with constrained growth
    • P.P. Pokharel, W. Liu, and J.C. Principe Kernel least mean square algorithm with constrained growth Signal Process. 89 3 2009 257 265
    • (2009) Signal Process. , vol.89 , Issue.3 , pp. 257-265
    • Pokharel, P.P.1    Liu, W.2    Principe, J.C.3
  • 50
    • 75249084652 scopus 로고    scopus 로고
    • Adaptive kernel principal component analysis
    • M. Ding, Z. Tian, and H. Xu Adaptive kernel principal component analysis Signal Process. 90 5 2010 1542 1553
    • (2010) Signal Process. , vol.90 , Issue.5 , pp. 1542-1553
    • Ding, M.1    Tian, Z.2    Xu, H.3
  • 52
    • 0003807773 scopus 로고    scopus 로고
    • 5th ed., revised Pearson Education, Limited India
    • S. Haykin Adaptive Filter Theory 5th ed., revised 2013 Pearson Education, Limited India
    • (2013) Adaptive Filter Theory
    • Haykin, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.