-
1
-
-
77958011806
-
Design of a multifunctional wireless sensor for in-situ monitoring of debris flows
-
Nov.
-
H.-C. Lee, A. Banerjee, Y.-M. Fang, B.-J. Lee, and C.-T. King, "Design of a multifunctional wireless sensor for in-situ monitoring of debris flows," IEEE Trans. Instrum. Meas., vol. 59, no. 11, pp. 2958-2967, Nov. 2010.
-
(2010)
IEEE Trans. Instrum. Meas.
, vol.59
, Issue.11
, pp. 2958-2967
-
-
Lee, H.-C.1
Banerjee, A.2
Fang, Y.-M.3
Lee, B.-J.4
King, C.-T.5
-
2
-
-
75449107549
-
Ultralow voltage nanoelectronics powered directly, and solely, from a tree
-
Jan.
-
C. Himes, E. Carlson, R. J. Ricchiuti, B. P. Otis, and B. A. Parviz, "Ultralow voltage nanoelectronics powered directly, and solely, from a tree," IEEE Trans. Nanotechnol., vol. 9, no. 1, pp. 2-5, Jan. 2010.
-
(2010)
IEEE Trans. Nanotechnol.
, vol.9
, Issue.1
, pp. 2-5
-
-
Himes, C.1
Carlson, E.2
Ricchiuti, R.J.3
Otis, B.P.4
Parviz, B.A.5
-
3
-
-
0003932256
-
Electrical effects accompanying the decomposition of organic compounds
-
Sep.
-
M. C. Potter, "Electrical effects accompanying the decomposition of organic compounds," Proc. Roy. Soc. London Ser. B, Contain. Papers Biol. Character, vol. 84, no. 571, pp. 260-276, Sep. 1911.
-
(1911)
Proc. Roy. Soc. London Ser. B, Contain. Papers Biol. Character
, vol.84
, Issue.571
, pp. 260-276
-
-
Potter, M.C.1
-
4
-
-
34548451055
-
Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration
-
Jul.
-
Y. Fan, H. Hu, and H. Liu, "Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration," J. Power Sour., vol. 171, no. 2, pp. 348-354, Jul. 2007.
-
(2007)
J. Power Sour.
, vol.171
, Issue.2
, pp. 348-354
-
-
Fan, Y.1
Hu, H.2
Liu, H.3
-
5
-
-
84865020859
-
Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell
-
Sep.
-
L. Wei, H. Han, and J. Shen, "Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell," Int. J. Hydrogen Energy, vol. 37, no. 17, pp. 12980-12986, Sep. 2012.
-
(2012)
Int. J. Hydrogen Energy
, vol.37
, Issue.17
, pp. 12980-12986
-
-
Wei, L.1
Han, H.2
Shen, J.3
-
6
-
-
84865740492
-
Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture
-
Aug.
-
M. Rahimnejad et al., "Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture," J. Microbiol., vol. 50, no. 4, pp. 575-580, Aug. 2012.
-
(2012)
J. Microbiol.
, vol.50
, Issue.4
, pp. 575-580
-
-
Rahimnejad, M.1
-
7
-
-
78650984998
-
Energy harvesting with microbial fuel cell and power management system
-
Jan.
-
A. Meehan, G. Hongwei, and Z. Lewandowski, "Energy harvesting with microbial fuel cell and power management system," IEEE Trans. Power Electron., vol. 26, no. 1, pp. 176-181, Jan. 2011.
-
(2011)
IEEE Trans. Power Electron.
, vol.26
, Issue.1
, pp. 176-181
-
-
Meehan, A.1
Hongwei, G.2
Lewandowski, Z.3
-
8
-
-
56449086528
-
Batteryless, wireless sensor powered by a sediment microbial fuel cell
-
Oct.
-
C. Donovan, A. Dewan, D. Heo, and H. Beyenal, "Batteryless, wireless sensor powered by a sediment microbial fuel cell," Environ. Sci. Technol., vol. 42, no. 22, pp. 8591-8596, Oct. 2008.
-
(2008)
Environ. Sci. Technol.
, vol.42
, Issue.22
, pp. 8591-8596
-
-
Donovan, C.1
Dewan, A.2
Heo, D.3
Beyenal, H.4
-
9
-
-
84893978707
-
Towards a self-sustained moisture and temperature monitoring system using soil energy
-
F.-T. Lin, J.-C. Hsieh, F.-C. Wen, W.-K. Wang, H.-C. Lee, and Y.-T. Liao, "Towards a self-sustained moisture and temperature monitoring system using soil energy," in Proc. IEEE Sensors, Nov. 2013, pp. 1-4.
-
Proc. IEEE Sensors, Nov. 2013
, pp. 1-4
-
-
Lin, F.-T.1
Hsieh, J.-C.2
Wen, F.-C.3
Wang, W.-K.4
Lee, H.-C.5
Liao, Y.-T.6
-
11
-
-
0037337606
-
Electricity production by Geobacter sulfurreducens attached to electrodes
-
D. R. Bond and D. R. Lovley, "Electricity production by Geobacter sulfurreducens attached to electrodes," Appl. Environ. Microbiol., vol. 69, no. 3, pp. 1548-1555, 2003.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, Issue.3
, pp. 1548-1555
-
-
Bond, D.R.1
Lovley, D.R.2
-
12
-
-
33947617936
-
Improving energy accumulation of microbial fuel cells by metabolism regulation using Rhodoferax ferrireducens as biocatalyst
-
Z. D. Liu, Z. W. Du, J. Lian, X. Y. Zhu, S. H. Li, and H. R. Li, "Improving energy accumulation of microbial fuel cells by metabolism regulation using Rhodoferax ferrireducens as biocatalyst," Lett. Appl. Microbiol., vol. 44, no. 4, pp. 393-398, 2007.
-
(2007)
Lett. Appl. Microbiol.
, vol.44
, Issue.4
, pp. 393-398
-
-
Liu, Z.D.1
Du, Z.W.2
Lian, J.3
Zhu, X.Y.4
Li, S.H.5
Li, H.R.6
-
13
-
-
74849126212
-
Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures
-
V. J. Watson and B. E. Logan, "Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures," Biotechnol. Bioeng., vol. 105, no. 3, pp. 489-498, 2010.
-
(2010)
Biotechnol. Bioeng.
, vol.105
, Issue.3
, pp. 489-498
-
-
Watson, V.J.1
Logan, B.E.2
-
14
-
-
77956885291
-
A new approach to in situ sediment remediation based on air-cathode microbial fuel cells
-
Y. Yuan, S. Zhou, and L. Zhuang, "A new approach to in situ sediment remediation based on air-cathode microbial fuel cells," J. Soils Sediments, vol. 10, no. 7, pp. 1427-1433, 2010.
-
(2010)
J. Soils Sediments
, vol.10
, Issue.7
, pp. 1427-1433
-
-
Yuan, Y.1
Zhou, S.2
Zhuang, L.3
-
15
-
-
84901321152
-
Experimental electrical modeling of soil for in situ soil moisture measurement
-
K. K. Singh, N. K. Chasta, and M. S. Baghini, "Experimental electrical modeling of soil for in situ soil moisture measurement," in Proc. Int. Symp. Electron. Syst. Design (ISED), Dec. 2013, pp. 123-127.
-
Proc. Int. Symp. Electron. Syst. Design (ISED), Dec. 2013
, pp. 123-127
-
-
Singh, K.K.1
Chasta, N.K.2
Baghini, M.S.3
-
16
-
-
33244460757
-
Current-dependent grounding resistance model based on energy balance of soil ionization
-
Jan.
-
S. Sekioka, M. I. Lorentzou, M. P. Philippakou, and J. M. Prousalidis, "Current-dependent grounding resistance model based on energy balance of soil ionization," IEEE Trans. Power Del., vol. 21, no. 1, pp. 194-201, Jan. 2006.
-
(2006)
IEEE Trans. Power Del.
, vol.21
, Issue.1
, pp. 194-201
-
-
Sekioka, S.1
Lorentzou, M.I.2
Philippakou, M.P.3
Prousalidis, J.M.4
-
17
-
-
80052699260
-
Recent progress in electrodes for microbial fuel cells
-
Jul.
-
J. Wei, P. Liang, and X. Huang, "Recent progress in electrodes for microbial fuel cells," Bioresour. Technol., vol. 102, no. 20, pp. 9335-9344, Jul. 2011.
-
(2011)
Bioresour. Technol.
, vol.102
, Issue.20
, pp. 9335-9344
-
-
Wei, J.1
Liang, P.2
Huang, X.3
-
18
-
-
84864032654
-
The improvement of power output from stacked microbial fuel cells (MFCs)
-
Jun.
-
A. Gurung and S. E. Oh, "The improvement of power output from stacked microbial fuel cells (MFCs)," Energy Sour., A, Recovery, Utilization, Environ. Effects, vol. 34, no. 17, pp. 1569-1576, Jun. 2012.
-
(2012)
Energy Sour., A, Recovery, Utilization, Environ. Effects
, vol.34
, Issue.17
, pp. 1569-1576
-
-
Gurung, A.1
Oh, S.E.2
-
19
-
-
77649234772
-
Improved energy output levels from small-scale microbial fuel cells
-
I. Ieropoulos, J. Greenman, and C. Melhuish, "Improved energy output levels from small-scale microbial fuel cells," Bioelectrochemistry, vol. 78, no. 1, pp. 44-50, 2010.
-
(2010)
Bioelectrochemistry
, vol.78
, Issue.1
, pp. 44-50
-
-
Ieropoulos, I.1
Greenman, J.2
Melhuish, C.3
-
20
-
-
84898076966
-
17.8 A 190 nW 33 kHz RC oscillator with ±0.21% temperature stability and 4 ppm long-term stability
-
D. Griffith, P. T. Roine, J. Murdock, and R. Smith, "17.8 A 190 nW 33 kHz RC oscillator with ±0.21% temperature stability and 4 ppm long-term stability," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), Feb. 2014, pp. 300-301.
-
IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), Feb. 2014
, pp. 300-301
-
-
Griffith, D.1
Roine, P.T.2
Murdock, J.3
Smith, R.4
-
21
-
-
83655180821
-
An inductorless DC-DC converter for energy harvesting with a 1.2-μW bandgap-referenced output controller
-
Dec.
-
Y.-C. Shih and B. P. Otis, "An inductorless DC-DC converter for energy harvesting with a 1.2-μW bandgap-referenced output controller," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 12, pp. 832-836, Dec. 2011.
-
(2011)
IEEE Trans. Circuits Syst. II, Exp. Briefs
, vol.58
, Issue.12
, pp. 832-836
-
-
Shih, Y.-C.1
Otis, B.P.2
|