메뉴 건너뛰기




Volumn 68, Issue , 2015, Pages 89-96

Seed yield prediction of sesame using artificial neural network

Author keywords

Artificial neural networks; Multiple regression model; Seed yield estimation; Sesame

Indexed keywords

AGRICULTURAL RESEARCH; ARTIFICIAL NEURAL NETWORK; CROP YIELD; DICOTYLEDON; ERROR ANALYSIS; PREDICTION; REGRESSION ANALYSIS; SEED; YIELD RESPONSE;

EID: 84929319624     PISSN: 11610301     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eja.2015.04.010     Document Type: Article
Times cited : (93)

References (50)
  • 1
    • 84864077744 scopus 로고    scopus 로고
    • Genetic divergence in sesame (Sesamum indicum L.) Landraces based on qualitative and quantitative traits
    • Akbar F., Rabbani M.A., Shinwari Z.B., Khan S. Genetic divergence in sesame (Sesamum indicum L.) Landraces based on qualitative and quantitative traits. Pak. J. Bot. 2011, 43(6):2737-2744.
    • (2011) Pak. J. Bot. , vol.43 , Issue.6 , pp. 2737-2744
    • Akbar, F.1    Rabbani, M.A.2    Shinwari, Z.B.3    Khan, S.4
  • 2
    • 57849083889 scopus 로고    scopus 로고
    • Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach
    • Alvarez R. Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach. Eur. J. Agron. 2007, 30:70-77.
    • (2007) Eur. J. Agron. , vol.30 , pp. 70-77
    • Alvarez, R.1
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: preliminary concepts
    • ASCE Task Committee Artificial neural networks in hydrology. I: preliminary concepts. J. Hydrol. Eng. 2000, 5(2):115-123. 10.1061/(ASCE)1084-0699(2000)5:2(115).
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 115-123
  • 4
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: hydrologic applications
    • ASCE Task Committee Artificial neural networks in hydrology. II: hydrologic applications. J. Hydrol. Eng. 2000, 5(2):124-137. 10.1061/(ASCE)1084-0699(2000)5:2(124).
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 5
    • 0001574340 scopus 로고    scopus 로고
    • Sesame Breeding
    • Wiley, Somerset
    • Ashri A. Sesame Breeding. Plant Breeding Review 1998, 160:179-228. Wiley, Somerset.
    • (1998) Plant Breeding Review , vol.160 , pp. 179-228
    • Ashri, A.1
  • 6
    • 84929319350 scopus 로고    scopus 로고
    • Comparison of some statistical techniques in evaluating Sesame yield and its contributing factors
    • Ashraf A. Comparison of some statistical techniques in evaluating Sesame yield and its contributing factors. Scientia Agriculturae 2013, 1(1):8-14.
    • (2013) Scientia Agriculturae , vol.1 , Issue.1 , pp. 8-14
    • Ashraf, A.1
  • 7
    • 0042541094 scopus 로고
    • Sesame
    • McGraw-Hill, New York, G. Robbelen, R.K. Downey, A. Ashri (Eds.)
    • Ashri A. Sesame. Oil Crops of the World 1989, 375-387. McGraw-Hill, New York. G. Robbelen, R.K. Downey, A. Ashri (Eds.).
    • (1989) Oil Crops of the World , pp. 375-387
    • Ashri, A.1
  • 8
    • 79952697761 scopus 로고    scopus 로고
    • Genetic programming for predicting longitudinal dispersion coefficients in streams
    • Azamathulla H.M., Ghani A.A. Genetic programming for predicting longitudinal dispersion coefficients in streams. Water Res. Manage. 2011, vol. 25(6 April):1537-1544.
    • (2011) Water Res. Manage. , vol.25 , Issue.6 APRIL , pp. 1537-1544
    • Azamathulla, H.M.1    Ghani, A.A.2
  • 9
    • 84858995100 scopus 로고    scopus 로고
    • Path analysis of the relationships between single seed yield and some morphological traits in sesame (genera Sesamum and Ceratotheca)
    • Azeez M.A., Morakinyo J.A. Path analysis of the relationships between single seed yield and some morphological traits in sesame (genera Sesamum and Ceratotheca). Int. J. Plant Breed. Genet. 2011, 5:358-368.
    • (2011) Int. J. Plant Breed. Genet. , vol.5 , pp. 358-368
    • Azeez, M.A.1    Morakinyo, J.A.2
  • 11
    • 84879828256 scopus 로고    scopus 로고
    • Prediction of CO2 loading capacity of chemical absorbents using a multi-layer perceptron neural network
    • Bastania D., Hamzehiea M.E., Davardoosta F., Mazinanib S., Poorbashiria A. Prediction of CO2 loading capacity of chemical absorbents using a multi-layer perceptron neural network. Fluid Phase Equilib. 2013, 354:6-11.
    • (2013) Fluid Phase Equilib. , vol.354 , pp. 6-11
    • Bastania, D.1    Hamzehiea, M.E.2    Davardoosta, F.3    Mazinanib, S.4    Poorbashiria, A.5
  • 12
    • 84887019013 scopus 로고    scopus 로고
    • Evaluation of lateral spreading using artificial neural networks
    • Baziar M.H., Ghorbani A. Evaluation of lateral spreading using artificial neural networks. Expert Syst. Appl. 2011, 38:5958-5966.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 5958-5966
    • Baziar, M.H.1    Ghorbani, A.2
  • 13
    • 0032693229 scopus 로고    scopus 로고
    • Study of genetic diversity in Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers
    • Bhat V., Babrekar P.P., Lakhanpaul S. Study of genetic diversity in Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica 1999, 110:21-33.
    • (1999) Euphytica , vol.110 , pp. 21-33
    • Bhat, V.1    Babrekar, P.P.2    Lakhanpaul, S.3
  • 15
    • 84887019878 scopus 로고    scopus 로고
    • Artificial intelligence-based estimation of flushing half-cone geometry
    • Emamgholizadeh S., Bateni S.M., Jeng D.S. Artificial intelligence-based estimation of flushing half-cone geometry. Eng. Appl. Artif. Intell. 2013, 26(10):2551-2558. 10.1016/j.engappai.2013.05.014.
    • (2013) Eng. Appl. Artif. Intell. , vol.26 , Issue.10 , pp. 2551-2558
    • Emamgholizadeh, S.1    Bateni, S.M.2    Jeng, D.S.3
  • 16
    • 84900376489 scopus 로고    scopus 로고
    • Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models
    • Emamgholizadeh S., Kashi H., Marofpoor I., Zalaghi E. Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models. Int. J. Environ. Sci. Technol. 2013, 11(3):645-656.
    • (2013) Int. J. Environ. Sci. Technol. , vol.11 , Issue.3 , pp. 645-656
    • Emamgholizadeh, S.1    Kashi, H.2    Marofpoor, I.3    Zalaghi, E.4
  • 18
    • 74349112159 scopus 로고    scopus 로고
    • Association analysis of single plant yield and its yield contributing characters in sesame (Sesamum indicum L.)
    • Ganesh S.K., Sakila M. Association analysis of single plant yield and its yield contributing characters in sesame (Sesamum indicum L.). Sesame Safflower Newslett. 1999, 14:16-18.
    • (1999) Sesame Safflower Newslett. , vol.14 , pp. 16-18
    • Ganesh, S.K.1    Sakila, M.2
  • 19
    • 84929301597 scopus 로고    scopus 로고
    • Trait association and path coefficient analysis attributing traits in sesame (Sesamum indicum L.)
    • Goudappagoudra R., Lokesha R., Ranganatha A.R.G. Trait association and path coefficient analysis attributing traits in sesame (Sesamum indicum L.). Electron. J. Plant Breed. 2011, 2(3):448-452.
    • (2011) Electron. J. Plant Breed. , vol.2 , Issue.3 , pp. 448-452
    • Goudappagoudra, R.1    Lokesha, R.2    Ranganatha, A.R.G.3
  • 20
    • 0003349552 scopus 로고
    • Neural networks
    • IEEE press, MacMillan, New York
    • Haykin S. Neural networks. A comprehensive foundation 1994, IEEE press, MacMillan, New York.
    • (1994) A comprehensive foundation
    • Haykin, S.1
  • 21
    • 84929301248 scopus 로고    scopus 로고
    • Genotypic correlation and path coefficient analysis of yield and some yield components in sesame (Sesamum indicum L.)
    • Ibrahim S.E., Khidir M.O. Genotypic correlation and path coefficient analysis of yield and some yield components in sesame (Sesamum indicum L.). Int. J. AgriSci. 2012, 2(8):664-670.
    • (2012) Int. J. AgriSci. , vol.2 , Issue.8 , pp. 664-670
    • Ibrahim, S.E.1    Khidir, M.O.2
  • 23
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch W.S., Pitts W.H. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5:115-133.
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.H.2
  • 24
    • 84929301924 scopus 로고    scopus 로고
    • Correlation and path analysis in sesame (Sesamum indicum L.)
    • Mothilal A. Correlation and path analysis in sesame (Sesamum indicum L.). Environ. Ecol. 2005, 233:478-480.
    • (2005) Environ. Ecol. , vol.233 , pp. 478-480
    • Mothilal, A.1
  • 25
    • 45449107884 scopus 로고    scopus 로고
    • Application of Neural Networks for the prediction of total phosphorus concentrations in surface waters
    • Mozejko J., Gniot R. Application of Neural Networks for the prediction of total phosphorus concentrations in surface waters. Pol. J. Environ. Stud. 2008, 17(3):363-368.
    • (2008) Pol. J. Environ. Stud. , vol.17 , Issue.3 , pp. 363-368
    • Mozejko, J.1    Gniot, R.2
  • 26
    • 38649091047 scopus 로고    scopus 로고
    • Camellia japonica L. genotypes identified by an artificial neural network based on phyllometric and fractal parameters
    • Mugnai S., Pandolfi C., Azzarello E., Masi E., Mancuso S. Camellia japonica L. genotypes identified by an artificial neural network based on phyllometric and fractal parameters. Plant SystEvol. 2008, 270:95-108.
    • (2008) Plant SystEvol. , vol.270 , pp. 95-108
    • Mugnai, S.1    Pandolfi, C.2    Azzarello, E.3    Masi, E.4    Mancuso, S.5
  • 27
    • 84907401026 scopus 로고    scopus 로고
    • Genetic parameters and their implications for yield improvement in sesame
    • Khan M.A., YasinMirza M., Akmal M., Naazar A., Khan I. Genetic parameters and their implications for yield improvement in sesame. Sarhad J. Agric. 2007, 23(3):623-627.
    • (2007) Sarhad J. Agric. , vol.23 , Issue.3 , pp. 623-627
    • Khan, M.A.1    YasinMirza, M.2    Akmal, M.3    Naazar, A.4    Khan, I.5
  • 28
    • 84894275778 scopus 로고    scopus 로고
    • Estimating of the dry unit weight of compacted soils using general linear model and multi-layer perceptron neural networks
    • Kolay E., Baser T. Estimating of the dry unit weight of compacted soils using general linear model and multi-layer perceptron neural networks. Appl. Soft Comput. 2014, 18:223-231.
    • (2014) Appl. Soft Comput. , vol.18 , pp. 223-231
    • Kolay, E.1    Baser, T.2
  • 29
    • 84929330962 scopus 로고    scopus 로고
    • Yield potential evaluation and path analysis of different sesame genotypes under various levels of iron
    • Kurdistani R., Tohidinejad E., Mohammadi-Nejad G., Zareie S. Yield potential evaluation and path analysis of different sesame genotypes under various levels of iron. Afr. J. Plant Sci. 2011, 5:862-866.
    • (2011) Afr. J. Plant Sci. , vol.5 , pp. 862-866
    • Kurdistani, R.1    Tohidinejad, E.2    Mohammadi-Nejad, G.3    Zareie, S.4
  • 30
    • 84861180898 scopus 로고    scopus 로고
    • Viscosity prediction of ternary mixtures containing ILs using multi-layer perceptron artificial neural network
    • Lashkarblooki M., Zeinolabedini Hezaveb A., Al-Ajmic A.M., Ayatollahib S. Viscosity prediction of ternary mixtures containing ILs using multi-layer perceptron artificial neural network. Fluid Phase Equilib. 2012, 326:15-20.
    • (2012) Fluid Phase Equilib. , vol.326 , pp. 15-20
    • Lashkarblooki, M.1    Zeinolabedini Hezaveb, A.2    Al-Ajmic, A.M.3    Ayatollahib, S.4
  • 31
    • 61449149469 scopus 로고    scopus 로고
    • Artificial neural networks as a tool for plant identification: a case study on Vietnamese tea accessions
    • Pandolfi C., Mugnai S., Azzarello E., Bergamasco S., Masi E., Mancuso S. Artificial neural networks as a tool for plant identification: a case study on Vietnamese tea accessions. Euphytica 2009, 166:411-421.
    • (2009) Euphytica , vol.166 , pp. 411-421
    • Pandolfi, C.1    Mugnai, S.2    Azzarello, E.3    Bergamasco, S.4    Masi, E.5    Mancuso, S.6
  • 32
    • 84929312973 scopus 로고    scopus 로고
    • Yield component analysis through multiple regression analysis in sesame
    • Parimala K., Mathur R.K. Yield component analysis through multiple regression analysis in sesame. Int. J. Agric. Sci. 2006, 2(2):338-340.
    • (2006) Int. J. Agric. Sci. , vol.2 , Issue.2 , pp. 338-340
    • Parimala, K.1    Mathur, R.K.2
  • 33
    • 84929373073 scopus 로고    scopus 로고
    • Qnet2000 neural network modelling for windows 95/98/NT
    • Vesta Services Inc., USA
    • Qnet2000 Manual Qnet2000 neural network modelling for windows 95/98/NT. Qnet Toll User's Guide and Datapro User's Guide 1999, Vesta Services Inc., USA.
    • (1999) Qnet Toll User's Guide and Datapro User's Guide
  • 34
    • 0000646059 scopus 로고
    • Learning internal representation by error back propagation
    • MIT Press, Cambridge, MA, D.E. Rumelhart, J.L. McClelland (Eds.)
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning internal representation by error back propagation. Parallel Distributed Processing 1986, 318-362. MIT Press, Cambridge, MA. D.E. Rumelhart, J.L. McClelland (Eds.).
    • (1986) Parallel Distributed Processing , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 35
    • 84929320299 scopus 로고    scopus 로고
    • M5 model tree and gene expression programming based modeling of sandy soil water movement under surface drip irrigation
    • Samadianfard S., Nazemi A.H., Ashraf Sadraddini A. M5 model tree and gene expression programming based modeling of sandy soil water movement under surface drip irrigation. Agric. Sci. Dev. 2014, 3(5):178-190.
    • (2014) Agric. Sci. Dev. , vol.3 , Issue.5 , pp. 178-190
    • Samadianfard, S.1    Nazemi, A.H.2    Ashraf Sadraddini, A.3
  • 36
    • 0003932824 scopus 로고    scopus 로고
    • Institute Inc. and World Programming Limited, England and Wales High Court (Chancery Division)
    • SAS Statistical Analysis Software 2010, Institute Inc. and World Programming Limited, England and Wales High Court (Chancery Division).
    • (2010) Statistical Analysis Software
  • 37
    • 12844259194 scopus 로고    scopus 로고
    • An intelligent approach for prediction of triaxial properties using unconfined uniaxial strength
    • Singh T.N., Kanchan R., Verma A.K., Singh S. An intelligent approach for prediction of triaxial properties using unconfined uniaxial strength. Mining Eng. J. 2003, 5:12-16.
    • (2003) Mining Eng. J. , vol.5 , pp. 12-16
    • Singh, T.N.1    Kanchan, R.2    Verma, A.K.3    Singh, S.4
  • 40
    • 84929322870 scopus 로고    scopus 로고
    • Interpretation of relationship between sesame yield and it's components under early sowing cropping condition
    • Shim K.B., Kang C.W., Seong J.D., Hwang C.D., Suh D.Y. Interpretation of relationship between sesame yield and it's components under early sowing cropping condition. Kor. J. Crop Sci. 2006, 51(4):269-273.
    • (2006) Kor. J. Crop Sci. , vol.51 , Issue.4 , pp. 269-273
    • Shim, K.B.1    Kang, C.W.2    Seong, J.D.3    Hwang, C.D.4    Suh, D.Y.5
  • 41
    • 84929321513 scopus 로고    scopus 로고
    • Heritabilities, genetic correlations and path coefficients of some agronomic traits in different environments in sesame
    • Shim K.B., Kang C.W., Lee S.W., Kim D.H., Lee B.H. Heritabilities, genetic correlations and path coefficients of some agronomic traits in different environments in sesame. Sesame Safflower Newslett. 2001, 16:23-27.
    • (2001) Sesame Safflower Newslett. , vol.16 , pp. 23-27
    • Shim, K.B.1    Kang, C.W.2    Lee, S.W.3    Kim, D.H.4    Lee, B.H.5
  • 42
    • 33746365866 scopus 로고    scopus 로고
    • Combining ability and heterosis studies for seed yield and its components in sesame
    • Solanki Z.S., Gupta D. Combining ability and heterosis studies for seed yield and its components in sesame. Sesame Safflower Newslett. 2001, 16:9-12.
    • (2001) Sesame Safflower Newslett. , vol.16 , pp. 9-12
    • Solanki, Z.S.1    Gupta, D.2
  • 43
    • 49749090140 scopus 로고    scopus 로고
    • Artificial intelligence-based inductive models for prediction and classification of fecal coliform in surface waters
    • Tufail M., Ormsbee L.E., Teegavarapu R. Artificial intelligence-based inductive models for prediction and classification of fecal coliform in surface waters. J. Environ. Eng. 2008, 134(9):789-799.
    • (2008) J. Environ. Eng. , vol.134 , Issue.9 , pp. 789-799
    • Tufail, M.1    Ormsbee, L.E.2    Teegavarapu, R.3
  • 46
    • 70350331261 scopus 로고    scopus 로고
    • Genotypic correlations and path coefficient analysis in sesame
    • Yingzhong Z., Yishou W. Genotypic correlations and path coefficient analysis in sesame. Sesame and Safflower News 2002, 17:10-12.
    • (2002) Sesame and Safflower News , vol.17 , pp. 10-12
    • Yingzhong, Z.1    Yishou, W.2
  • 47
    • 79151474442 scopus 로고    scopus 로고
    • Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils
    • Yilmaz I., Kaynar O. Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Syst. Appl. 2011, 38:5958-5966.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 5958-5966
    • Yilmaz, I.1    Kaynar, O.2
  • 48
    • 78249246335 scopus 로고    scopus 로고
    • Assessment of selection criteria in sesame by using correlation coefficients, path and factor analyses
    • Yol E., Karaman E., Furat S., Uzun B. Assessment of selection criteria in sesame by using correlation coefficients, path and factor analyses. Aust. J. Crop Sci. 2010, 4:598-602.
    • (2010) Aust. J. Crop Sci. , vol.4 , pp. 598-602
    • Yol, E.1    Karaman, E.2    Furat, S.3    Uzun, B.4
  • 49
    • 84929323826 scopus 로고    scopus 로고
    • Application of artificial neural network in genomic selection for crop improvement
    • Yong-Jun S., Lei W., Wang D., Chang-Hong G. Application of artificial neural network in genomic selection for crop improvement. Acta Agronom. Sin. 2011, 37(12):1-8.
    • (2011) Acta Agronom. Sin. , vol.37 , Issue.12 , pp. 1-8
    • Yong-Jun, S.1    Lei, W.2    Wang, D.3    Chang-Hong, G.4
  • 50
    • 84866664873 scopus 로고    scopus 로고
    • Comparison of multiple linear regressions (MLR) and artificial neural network (ANN) in predicting the yield using its components in the Hulless Barley
    • Zaefizadeh M., Khayatnezhad M., Gholamin R. Comparison of multiple linear regressions (MLR) and artificial neural network (ANN) in predicting the yield using its components in the Hulless Barley. Am. Eur. J. Agric. Environ. Sci. 2011, 10(1):60-64.
    • (2011) Am. Eur. J. Agric. Environ. Sci. , vol.10 , Issue.1 , pp. 60-64
    • Zaefizadeh, M.1    Khayatnezhad, M.2    Gholamin, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.