메뉴 건너뛰기




Volumn 22, Issue , 2015, Pages 1-14

A genetic algorithm for unconstrained multi-objective optimization

Author keywords

Genetic algorithm; Multi objective optimization; Numerical performance evaluation; Optimal sequence method

Indexed keywords

GENETIC ALGORITHMS; NUMERICAL METHODS;

EID: 84929278212     PISSN: 22106502     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.swevo.2015.01.002     Document Type: Article
Times cited : (70)

References (52)
  • 2
    • 21744446928 scopus 로고    scopus 로고
    • Supervised kernel locality preserving projections for face recognition
    • J. Cheng, Q.S. Liu, H.Q. Lu, and Y.W. Chen Supervised kernel locality preserving projections for face recognition Neurocomputing 67 8 2005 443 449
    • (2005) Neurocomputing , vol.67 , Issue.8 , pp. 443-449
    • Cheng, J.1    Liu, Q.S.2    Lu, H.Q.3    Chen, Y.W.4
  • 3
    • 84947923627 scopus 로고    scopus 로고
    • The pareto envelope-based selection algorithm for multiobjective optimization
    • Springer
    • D. Corne, J. Knowles, M. Oates, The pareto envelope-based selection algorithm for multiobjective optimization, in: Parallel Problem Solving from Nature PPSN VI, Springer, 2000, pp. 839-848.
    • (2000) Parallel Problem Solving from Nature PPSN VI , pp. 839-848
    • Corne, D.1    Knowles, J.2    Oates, M.3
  • 5
  • 9
    • 0000135182 scopus 로고
    • A note on Boltzmann tournament selection for genetic algorithms and population-oriented simulated annealing
    • D.E. Goldberg A note on Boltzmann tournament selection for genetic algorithms and population-oriented simulated annealing Complex Syst. 4 4 1990 445 460
    • (1990) Complex Syst. , vol.4 , Issue.4 , pp. 445-460
    • Goldberg, D.E.1
  • 10
    • 0000904077 scopus 로고
    • Messy genetic algorithms: Motivation, analysis, and first results
    • D.E. Goldberg, B. Korb, and K. Deb Messy genetic algorithms: motivation, analysis, and first results Complex Syst. 3 5 1989 493 530
    • (1989) Complex Syst. , vol.3 , Issue.5 , pp. 493-530
    • Goldberg, D.E.1    Korb, B.2    Deb, K.3
  • 12
    • 0022559425 scopus 로고
    • Optimization of control parameters for genetic algorithms
    • J.J. Grefenstette Optimization of control parameters for genetic algorithms IEEE Trans. Syst. Man Cybern. 16 1 1986 122 128
    • (1986) IEEE Trans. Syst. Man Cybern. , vol.16 , Issue.1 , pp. 122-128
    • Grefenstette, J.J.1
  • 13
    • 34249839613 scopus 로고
    • Genetic search strategies in multicriterion optimal design
    • P. Hajela, and C.Y. Lin Genetic search strategies in multicriterion optimal design Struct. Multidiscip. Optim. 4 2 1992 99 107
    • (1992) Struct. Multidiscip. Optim. , vol.4 , Issue.2 , pp. 99-107
    • Hajela, P.1    Lin, C.Y.2
  • 17
    • 0142165034 scopus 로고    scopus 로고
    • Reducing the run-time complexity of multiobjective EAs the NSGA-II and other algorithms
    • M.T. Jensen Reducing the run-time complexity of multiobjective EAs the NSGA-II and other algorithms IEEE Trans. Evol. Comput. 7 5 2003 503 515
    • (2003) IEEE Trans. Evol. Comput. , vol.7 , Issue.5 , pp. 503-515
    • Jensen, M.T.1
  • 18
    • 0037116761 scopus 로고    scopus 로고
    • Multi-objective meta-heuristics an overview of the current state-of-the-art
    • D.F. Jones, S.K. Mirrazavi, and M. Tamiz Multi-objective meta-heuristics an overview of the current state-of-the-art Eur. J. Oper. Res. 137 1 2002 1 9
    • (2002) Eur. J. Oper. Res. , vol.137 , Issue.1 , pp. 1-9
    • Jones, D.F.1    Mirrazavi, S.K.2    Tamiz, M.3
  • 19
    • 0001008973 scopus 로고
    • Neurogenetic learning an integrated method of designing and training neural networks using genetic algorithms
    • H. Kitano Neurogenetic learning an integrated method of designing and training neural networks using genetic algorithms Physica D: Nonlinear Phenom 75 1-3 1994 225 238
    • (1994) Physica D: Nonlinear Phenom , vol.75 , Issue.1-3 , pp. 225-238
    • Kitano, H.1
  • 21
    • 0034199912 scopus 로고    scopus 로고
    • Approximating the nondominated front using the pareto archived evolution strategy
    • J.D. Knowles, and D.W. Corne Approximating the nondominated front using the pareto archived evolution strategy Evol. Comput. 8 2 2000 149 172
    • (2000) Evol. Comput. , vol.8 , Issue.2 , pp. 149-172
    • Knowles, J.D.1    Corne, D.W.2
  • 23
    • 70450002665 scopus 로고    scopus 로고
    • Performance assessment of generalized differential evolution with a given set of problems
    • S. Kukkonen, J. Lampinen, Performance assessment of generalized differential evolution with a given set of problems, in: IEEE Congress on Evolutionary Computation, CEC'07, IEEE, 2007, pp. 3593-3600.
    • (2007) IEEE Congress on Evolutionary Computation, CEC'07, IEEE , pp. 3593-3600
    • Kukkonen, S.1    Lampinen, J.2
  • 24
    • 34248681270 scopus 로고    scopus 로고
    • Improved genetic algorithm inspired by biological evolution
    • P. Kumar, D. Gospodaric, and P. Bauer Improved genetic algorithm inspired by biological evolution Soft Comput. 11 10 2007 923 941
    • (2007) Soft Comput. , vol.11 , Issue.10 , pp. 923-941
    • Kumar, P.1    Gospodaric, D.2    Bauer, P.3
  • 26
    • 70450015203 scopus 로고    scopus 로고
    • The multiobjective evolutionary algorithm based on determined weight and sub-regional search
    • H.L. Liu, X.Q. Li, The multiobjective evolutionary algorithm based on determined weight and sub-regional search, in: IEEE Congress on Evolutionary Computation, CEC09, IEEE, 2009, pp. 1928-1934.
    • (2009) IEEE Congress on Evolutionary Computation, CEC09, IEEE , pp. 1928-1934
    • Liu, H.L.1    Li, X.Q.2
  • 28
    • 44649124150 scopus 로고    scopus 로고
    • A new extension of kernel feature and its application for visual recognition
    • Q.S. Liu, H.L. Jin, X.O. Tang, H.Q. Lu, and S.D. Ma A new extension of kernel feature and its application for visual recognition Neurocomputing 71 10-12 2008 1850 1856
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 1850-1856
    • Liu, Q.S.1    Jin, H.L.2    Tang, X.O.3    Lu, H.Q.4    Ma, S.D.5
  • 29
    • 79958816898 scopus 로고    scopus 로고
    • Hypergraph with sampling for image retrieval
    • Q.S. Liu, Y.C. Huang, and D.N. Metaxas Hypergraph with sampling for image retrieval Pattern Recognit. 10 44 2011 2255 2262
    • (2011) Pattern Recognit. , vol.10 , Issue.44 , pp. 2255-2262
    • Liu, Q.S.1    Huang, Y.C.2    Metaxas, D.N.3
  • 30
    • 0042863389 scopus 로고    scopus 로고
    • Rank-density-based multiobjective genetic algorithm and benchmark test function study
    • H. Lu, and G.G. Yen Rank-density-based multiobjective genetic algorithm and benchmark test function study IEEE Trans. Evol. Comput. 7 4 2003 325 343
    • (2003) IEEE Trans. Evol. Comput. , vol.7 , Issue.4 , pp. 325-343
    • Lu, H.1    Yen, G.G.2
  • 32
    • 0030241820 scopus 로고    scopus 로고
    • Multi-objective genetic algorithm and its applications to flowshop scheduling
    • T. Murata, H. Ishibuchi, and H. Tanaka Multi-objective genetic algorithm and its applications to flowshop scheduling Comput. Ind. Eng. 30 4 1996 957 968
    • (1996) Comput. Ind. Eng. , vol.30 , Issue.4 , pp. 957-968
    • Murata, T.1    Ishibuchi, H.2    Tanaka, H.3
  • 33
    • 70449824001 scopus 로고    scopus 로고
    • Multi-objective evolutionary programming without non-donamination sorting is up to twenty times faster
    • B.Y. Qu, P.N. Suganthan, Multi-objective evolutionary programming without non-donamination sorting is up to twenty times faster, in: IEEE Congress on Evolutionary Computation, CEC09, IEEE, 2009, pp. 2934-2939.
    • (2009) IEEE Congress on Evolutionary Computation, CEC09, IEEE , pp. 2934-2939
    • Qu, B.Y.1    Suganthan, P.N.2
  • 34
    • 84929265945 scopus 로고    scopus 로고
    • Multiobjective optimization when objectives exhibit non-uniform latencies
    • R. Allmendinger, J. Handl, and J. Knowles Multiobjective optimization when objectives exhibit non-uniform latencies Eur. J. Oper. Res. 2014
    • (2014) Eur. J. Oper. Res.
    • Allmendinger, R.1    Handl, J.2    Knowles, J.3
  • 36
    • 80052671205 scopus 로고    scopus 로고
    • A new hybrid mutation operator for multiobjective optimization with differential evolution
    • K. Sindhya, S. Ruuska, T. Haanpää, and K. Miettinen A new hybrid mutation operator for multiobjective optimization with differential evolution Soft Comput. 15 10 2011 2041 2055
    • (2011) Soft Comput. , vol.15 , Issue.10 , pp. 2041-2055
    • Sindhya, K.1    Ruuska, S.2    Haanpää, T.3    Miettinen, K.4
  • 38
    • 0000852513 scopus 로고
    • Muiltiobjective optimization using nondominated sorting in genetic algorithms
    • N. Srinivas, and K. Deb Muiltiobjective optimization using nondominated sorting in genetic algorithms Evol. Comput. 2 3 1994 221 248
    • (1994) Evol. Comput. , vol.2 , Issue.3 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 39
    • 70449794467 scopus 로고    scopus 로고
    • Performance assessment of the hybrid archive-based micro genetic algorithm (AMGA) on the CEC09 test problems
    • S. Tiwari, G. Fadel, P. Koch, K. Deb, Performance assessment of the hybrid archive-based micro genetic algorithm (AMGA) on the CEC09 test problems, in: IEEE Congress on Evolutionary Computation, CEC09, IEEE, 2009, pp. 1935-1942.
    • (2009) IEEE Congress on Evolutionary Computation, CEC09, IEEE , pp. 1935-1942
    • Tiwari, S.1    Fadel, G.2    Koch, P.3    Deb, K.4
  • 40
    • 70450032856 scopus 로고    scopus 로고
    • Multiple trajectory search for unconstrained/constrained multi-objective optimization
    • L.Y. Tseng, C. Chen, Multiple trajectory search for unconstrained/constrained multi-objective optimization, in: IEEE Congress on Evolutionary Computation, CEC09, IEEE, 2009, pp. 1951-1958.
    • (2009) IEEE Congress on Evolutionary Computation, CEC09, IEEE , pp. 1951-1958
    • Tseng, L.Y.1    Chen, C.2
  • 42
    • 0034201456 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms analyzing the state-of-the-art
    • D.V. Van, and G.B. Lamont Multiobjective evolutionary algorithms analyzing the state-of-the-art Evol. Comput. 8 2 2000 125 147
    • (2000) Evol. Comput. , vol.8 , Issue.2 , pp. 125-147
    • Van, D.V.1    Lamont, G.B.2
  • 44
    • 0037803437 scopus 로고    scopus 로고
    • Dynamic multiobjective evolutionary algorithm adaptive cell-based rank and density estimation
    • G.G. Yen, and H. Lu Dynamic multiobjective evolutionary algorithm adaptive cell-based rank and density estimation IEEE Trans. Evol. Comput. 7 3 2003 253 274
    • (2003) IEEE Trans. Evol. Comput. , vol.7 , Issue.3 , pp. 253-274
    • Yen, G.G.1    Lu, H.2
  • 45
    • 70449921244 scopus 로고    scopus 로고
    • Differential evolution with self-adaptation and local search for constrained multiobjective optimization
    • A. Zamuda, J. Brest, B. Bošković, V. Žumer, Differential evolution with self-adaptation and local search for constrained multiobjective optimization, in: IEEE Congress on Evolutionary Computation, CEC09, IEEE, 2009, pp. 195-202.
    • (2009) IEEE Congress on Evolutionary Computation, CEC09, IEEE , pp. 195-202
    • Zamuda, A.1
  • 46
    • 34548108555 scopus 로고    scopus 로고
    • MOEA/D a multiobjective evolutionary algorithm based on decomposition
    • Q. Zhang, and H. Li MOEA/D a multiobjective evolutionary algorithm based on decomposition IEEE Trans. Evol. Comput. 11 6 2007 712 731
    • (2007) IEEE Trans. Evol. Comput. , vol.11 , Issue.6 , pp. 712-731
    • Zhang, Q.1    Li, H.2
  • 50
    • 0034199979 scopus 로고    scopus 로고
    • Comparison of multiobjective evolutionary algorithms empirical results
    • E. Zitzler, K. Deb, and L. Thiele Comparison of multiobjective evolutionary algorithms empirical results Evol. Comput. 8 2 2000 173 195
    • (2000) Evol. Comput. , vol.8 , Issue.2 , pp. 173-195
    • Zitzler, E.1    Deb, K.2    Thiele, L.3
  • 52
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms a comparative case study and the strength pareto approach
    • E. Zitzler, and L. Thiele Multiobjective evolutionary algorithms a comparative case study and the strength pareto approach IEEE Trans. Evol. Comput. 3 4 1999 257 271
    • (1999) IEEE Trans. Evol. Comput. , vol.3 , Issue.4 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.