-
1
-
-
77956221272
-
Finding dense subgraphs with size bounds
-
R. Andersen and K. Chellapilla. Finding dense subgraphs with size bounds. In WAW, 2009.
-
(2009)
WAW
-
-
Andersen, R.1
Chellapilla, K.2
-
2
-
-
84863730251
-
Dense subgraph maintenance under streaming edge weight updates for real-time story identification
-
A. Angel, N. Sarkas, N. Koudas, and D. Srivastava. Dense subgraph maintenance under streaming edge weight updates for real-time story identification. PVLDB, 5(6), 2012.
-
(2012)
PVLDB
, vol.5
, Issue.6
-
-
Angel, A.1
Sarkas, N.2
Koudas, N.3
Srivastava, D.4
-
3
-
-
84863730251
-
Dense subgraph maintenance under streaming edge weight updates for real-time story identification
-
A. Angel, N. Sarkas, N. Koudas, and D. Srivastava. Dense subgraph maintenance under streaming edge weight updates for real-time story identification. PVLDB, 5(6), 2012.
-
(2012)
PVLDB
, vol.5
, Issue.6
-
-
Angel, A.1
Sarkas, N.2
Koudas, N.3
Srivastava, D.4
-
5
-
-
0042657622
-
Greedily finding a dense subgraph
-
Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding a dense subgraph. J. Algorithms, 34(2), 2000.
-
(2000)
J. Algorithms
, vol.34
, Issue.2
-
-
Asahiro, Y.1
Iwama, K.2
Tamaki, H.3
Tokuyama, T.4
-
6
-
-
84863731175
-
Densest subgraph in streaming and mapreduce
-
B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest subgraph in streaming and mapreduce. PVLDB, 5(5), 2012.
-
(2012)
PVLDB
, vol.5
, Issue.5
-
-
Bahmani, B.1
Kumar, R.2
Vassilvitskii, S.3
-
7
-
-
77954702542
-
Detecting high log-densities:An o (n 1/4) Approximation for densest K -subgraph
-
A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detecting high log-densities: an O (n 1/4) approximation for densest k -subgraph. In STOC, pages 201-210, 2010.
-
(2010)
STOC
, pp. 201-210
-
-
Bhaskara, A.1
Charikar, M.2
Chlamtac, E.3
Feige, U.4
Vijayaraghavan, A.5
-
9
-
-
3142725442
-
Greedy approximation algorithms for finding dense components in a graph
-
K. Jansen and S. Khuller, editors
-
M. Charikar. Greedy approximation algorithms for finding dense components in a graph. In K. Jansen and S. Khuller, editors, APPROX. Springer, 2000.
-
(2000)
APPROX. Springer
-
-
Charikar, M.1
-
10
-
-
84861732705
-
Dense subgraph extraction with application to community detection
-
J. Chen and Y. Saad. Dense subgraph extraction with application to community detection. TKDE, 24(7), 2012.
-
(2012)
TKDE
, vol.24
, Issue.7
-
-
Chen, J.1
Saad, Y.2
-
11
-
-
84880566637
-
Online search of overlapping communities
-
W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang. Online search of overlapping communities. In SIGMOD, 2013.
-
(2013)
SIGMOD
-
-
Cui, W.1
Xiao, Y.2
Wang, H.3
Lu, Y.4
Wang, W.5
-
12
-
-
70350630561
-
Migration motif:A Spatial - Temporal pattern mining approach for financial markets
-
X. Du, R. Jin, L. Ding, V. E. Lee, and J. H. Thornton, Jr. Migration motif: a spatial - temporal pattern mining approach for financial markets. In KDD, 2009.
-
(2009)
KDD
-
-
Du, X.1
Jin, R.2
Ding, L.3
Lee, V.E.4
Thornton, J.H.5
-
14
-
-
33745630997
-
Discovering large dense subgraphs in massive graphs
-
D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs in massive graphs. In VLDB, 2005.
-
(2005)
VLDB
-
-
Gibson, D.1
Kumar, R.2
Tomkins, A.3
-
16
-
-
34547839125
-
Ruling out PTAS for graph min-bisection, dense k -subgraph, and bipartite clique
-
S. Khot. Ruling out PTAS for graph min-bisection, dense k -subgraph, and bipartite clique. J. Computing, 36(4), 2006.
-
(2006)
J. Computing
, vol.36
, Issue.4
-
-
Khot, S.1
-
17
-
-
77956223399
-
On finding dense subgraphs
-
S. Khuller and B. Saha. On finding dense subgraphs. In ICALP, 2009.
-
(2009)
ICALP
-
-
Khuller, S.1
Saha, B.2
-
18
-
-
33750837124
-
A combinatorial approach to the analysis of differential gene expression data:The use of graph algorithms for disease prediction and screening
-
M. A. Langston and et al. A combinatorial approach to the analysis of differential gene expression data: The use of graph algorithms for disease prediction and screening. In Methods of Microarray Data Analysis IV. 2005.
-
(2005)
Methods of Microarray Data Analysis IV
-
-
Langston, M.A.1
-
20
-
-
0026366408
-
Optimization, approximation, and complexity classes
-
C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. J. Comput. Syst. Sci., 43(3), 1991.
-
(1991)
J. Comput. Syst. Sci.
, vol.43
, Issue.3
-
-
Papadimitriou, C.H.1
Yannakakis, M.2
-
21
-
-
77956192979
-
The Community-search problem and how to plan a successful cocktail party
-
M. Sozio and A. Gionis. The community-search problem and how to plan a successful cocktail party. In KDD, pages 939-948, 2010.
-
(2010)
KDD
, pp. 939-948
-
-
Sozio, M.1
Gionis, A.2
-
22
-
-
84886545507
-
Discovering nested communities
-
N. Tatti and A. Gionis. Discovering nested communities. In ECML/PKDD (2), 2013.
-
(2013)
ECML/PKDD
, Issue.2
-
-
Tatti, N.1
Gionis, A.2
-
23
-
-
84970890840
-
Denser than the densest subgraph:Extracting optimal quasi-cliques with quality guarantees
-
C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarli. Denser than the densest subgraph: Extracting optimal quasi-cliques with quality guarantees. In KDD, 2013.
-
(2013)
KDD
-
-
Tsourakakis, C.1
Bonchi, F.2
Gionis, A.3
Gullo, F.4
Tsiarli, M.5
-
24
-
-
84928720486
-
Discovery of top-k dense subgraphs in dynamic graph collections
-
E. Valari, M. Kontaki, and A. N. Papadopoulos. Discovery of top-k dense subgraphs in dynamic graph collections. In SSDBM, 2012.
-
(2012)
SSDBM
-
-
Valari, E.1
Kontaki, M.2
Papadopoulos, A.N.3
-
25
-
-
80052664153
-
On triangulation-based dense neighborhood graph discovery
-
N. Wang, J. Zhang, K.-L. Tan, and A. K. H. Tung. On triangulation-based dense neighborhood graph discovery. PVLDB, 4(2), 2010.
-
(2010)
PVLDB
, vol.4
, Issue.2
-
-
Wang, N.1
Zhang, J.2
Tan, K.-L.3
Tung, A.K.H.4
|