메뉴 건너뛰기




Volumn 24, Issue 5, 2015, Pages

Efficiency of piezoelectric mechanical vibration energy harvesting

Author keywords

harvesting efficiency; optimal design parameters; optimization; piezoelectric energy harvesting

Indexed keywords

DESIGN; ENERGY EFFICIENCY; ENERGY HARVESTING; HARVESTERS; OPTIMAL SYSTEMS; OPTIMIZATION; PIEZOELECTRICITY;

EID: 84928636666     PISSN: 09641726     EISSN: 1361665X     Source Type: Journal    
DOI: 10.1088/0964-1726/24/5/055006     Document Type: Article
Times cited : (76)

References (27)
  • 1
    • 84869407386 scopus 로고    scopus 로고
    • Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems
    • Wang Z L and Wu W 2012 Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems Angew. Chem., Int. Edn Engl. 51 2-24
    • (2012) Angew. Chem., Int. Edn Engl. , vol.51 , pp. 2-24
    • Wang, Z.L.1    Wu, W.2
  • 2
    • 33846077160 scopus 로고    scopus 로고
    • Energy harvesting vibration sources for microsystems applications
    • Beeby S P, Tudor M J and White N M 2006 Energy harvesting vibration sources for microsystems applications Meas. Sci. Technol. 13 R175-95
    • (2006) Meas. Sci. Technol. , vol.13 , pp. 175-R195
    • Beeby, S.P.1    Tudor, M.J.2    White, N.M.3
  • 3
    • 56449115420 scopus 로고    scopus 로고
    • Powering MEMS portable devices-A review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems
    • Cook-Chennault K A, Thambi N and Sastry A M 2008 Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems Smart Mater. Struct. 17 043001
    • (2008) Smart Mater. Struct. , vol.17 , Issue.4
    • Cook-Chennault, K.A.1    Thambi, N.2    Sastry, A.M.3
  • 4
    • 84856427647 scopus 로고    scopus 로고
    • Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters
    • Karami M A and Inman D J 2012 Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters Appl. Phys. Lett. 100 042901
    • (2012) Appl. Phys. Lett. , vol.100
    • Karami, M.A.1    Inman, D.J.2
  • 7
    • 2442709343 scopus 로고    scopus 로고
    • A review of power harvesting from vibration using piezoelectric materials
    • Sodano H A, Inman D J and Park G 2004 A review of power harvesting from vibration using piezoelectric materials Shock Vib. Dig. 36 197-205
    • (2004) Shock Vib. Dig. , vol.36 , pp. 197-205
    • Sodano, H.A.1    Inman, D.J.2    Park, G.3
  • 8
    • 70349696211 scopus 로고    scopus 로고
    • Piezoelectric thin films for sensors, actuators, and energy harvesting
    • Muralt P, Polcawich R G and Troiler-Mckinstry S 2009 Piezoelectric thin films for sensors, actuators, and energy harvesting MRS Bull. 34 658-64
    • (2009) MRS Bull. , vol.34 , pp. 658-664
    • Muralt, P.1    Polcawich, R.G.2    Troiler-Mckinstry, S.3
  • 9
    • 84861832877 scopus 로고    scopus 로고
    • Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons
    • Park K I et al 2012 Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons Adv. Mater. 24 2999-3004
    • (2012) Adv. Mater. , vol.24 , pp. 2999-3004
    • Park, K.I.1
  • 10
    • 84879767316 scopus 로고    scopus 로고
    • Influence of aluminum nitride crystal orientation on MEMS energy harvesting device performance
    • Jackson N, O'Keeffe R, Waldron F, O'Neill M and Mathewson A 2013 Influence of aluminum nitride crystal orientation on MEMS energy harvesting device performance J. Micromech. Microeng. 23 075014
    • (2013) J. Micromech. Microeng. , vol.23 , Issue.7
    • Jackson, N.1    O'Keeffe, R.2    Waldron, F.3    O'Neill, M.4    Mathewson, A.5
  • 11
    • 84928630688 scopus 로고    scopus 로고
    • Wardle B L and Spearing S M 2009 ed A Mitsos and P I Barton (Weinheim: Wiley) chapter 9
    • (2009)
  • 12
    • 70350688153 scopus 로고    scopus 로고
    • Piezoelectric energy harvesting from broadband random vibrations
    • Adhikari S, Friswell M I and Inman D J 2009 Piezoelectric energy harvesting from broadband random vibrations Smart Mater. Struct. 18 115005
    • (2009) Smart Mater. Struct. , vol.18 , Issue.11
    • Adhikari, S.1    Friswell, M.I.2    Inman, D.J.3
  • 13
    • 61849137821 scopus 로고    scopus 로고
    • Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs
    • Erturk A, Renno J M and Inman D J 2009 Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs J. Intell. Mater. Syst. Struct. 20 529-44
    • (2009) J. Intell. Mater. Syst. Struct. , vol.20 , pp. 529-544
    • Erturk, A.1    Renno, J.M.2    Inman, D.J.3
  • 14
    • 83755183942 scopus 로고    scopus 로고
    • Size effect of flexible proof mass on the mechanical behavior of micron-scale cantilevers for energy harvesting applications
    • Kim M, Hong S, Miller D J, Dugundji J and Wardle B L 2011 Size effect of flexible proof mass on the mechanical behavior of micron-scale cantilevers for energy harvesting applications Appl. Phys. Lett. 99 243506
    • (2011) Appl. Phys. Lett. , vol.99
    • Kim, M.1    Hong, S.2    Miller, D.J.3    Dugundji, J.4    Wardle, B.L.5
  • 17
    • 84864247157 scopus 로고    scopus 로고
    • Array of piezoelectric energy harvesting by the equivalent impedance approach
    • Lien I C and Shu Y C 2012 Array of piezoelectric energy harvesting by the equivalent impedance approach Smart Mater. Struct. 21 082001
    • (2012) Smart Mater. Struct. , vol.21 , Issue.8
    • Lien, I.C.1    Shu, Y.C.2
  • 18
    • 77949893197 scopus 로고    scopus 로고
    • Modeling and experimental verification of proof mass effects on vibration energy harvester performance
    • Kim M, Hoegen M, Dugundji J and Wardle B L 2010 Modeling and experimental verification of proof mass effects on vibration energy harvester performance Smart Mater. Struct. 19 045023
    • (2010) Smart Mater. Struct. , vol.19 , Issue.4
    • Kim, M.1    Hoegen, M.2    Dugundji, J.3    Wardle, B.L.4
  • 19
    • 27144528640 scopus 로고    scopus 로고
    • On the effectiveness of vibration-based energy harvesting
    • Roundy S 2005 On the effectiveness of vibration-based energy harvesting J. Intell. Mater. Syst. Struct. 16 809-23
    • (2005) J. Intell. Mater. Syst. Struct. , vol.16 , pp. 809-823
    • Roundy, S.1
  • 20
    • 2542479730 scopus 로고    scopus 로고
    • Efficiency of energy conversion for devices containing a piezoelectric component
    • Richards C D, Anderson M J, Bahr D F and Richards R F 2004 Efficiency of energy conversion for devices containing a piezoelectric component J. Micromech. Microeng. 14 717-21
    • (2004) J. Micromech. Microeng. , vol.14 , Issue.5 , pp. 717-721
    • Richards, C.D.1    Anderson, M.J.2    Bahr, D.F.3    Richards, R.F.4
  • 21
    • 84903699927 scopus 로고    scopus 로고
    • The power and efficiency limits of piezoelectric energy harvesting
    • Shafer M W and Garcia E 2014 The power and efficiency limits of piezoelectric energy harvesting J. Vib. Acoust. 136 021007
    • (2014) J. Vib. Acoust. , vol.136
    • Shafer, M.W.1    Garcia, E.2
  • 22
    • 33947119725 scopus 로고    scopus 로고
    • On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages
    • Guan M J and Liao W H 2007 On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages Smart Mater. Struct. 16 498
    • (2007) Smart Mater. Struct. , vol.16 , Issue.2 , pp. 498
    • Guan, M.J.1    Liao, W.H.2
  • 23
    • 78650401523 scopus 로고    scopus 로고
    • Criterion for material selection in design of bulk piezoelectric energy harvesters
    • Priya S 2010 Criterion for material selection in design of bulk piezoelectric energy harvesters IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 2610-2
    • (2010) IEEE Trans. Ultrason. Ferroelectr. Freq. Control , vol.57 , pp. 2610-2612
    • Priya, S.1
  • 24
    • 34249275666 scopus 로고    scopus 로고
    • Experimental verification of models for microfabricated piezoelectric vibration energy harvesters
    • Du T N E and Wardle B L 2007 Experimental verification of models for microfabricated piezoelectric vibration energy harvesters AIAA J. 45 1126-37
    • (2007) AIAA J. , vol.45 , pp. 1126-1137
    • Du, T.N.E.1    Wardle, B.L.2
  • 25
    • 85083959156 scopus 로고    scopus 로고
    • An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations
    • Erturk A and Inman D J 2009 An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations Smart Mater. Struct. 18 025009
    • (2009) Smart Mater. Struct. , vol.18 , Issue.2
    • Erturk, A.1    Inman, D.J.2
  • 26
    • 84879249578 scopus 로고    scopus 로고
    • Optimal design of piezoelectric materials and devices for energy harvesting
    • Kim M, Dugundji J and Wardle B L 2013 Optimal design of piezoelectric materials and devices for energy harvesting J. Korean Phys. Soc. 62 1689-95
    • (2013) J. Korean Phys. Soc. , vol.62 , pp. 1689-1695
    • Kim, M.1    Dugundji, J.2    Wardle, B.L.3
  • 27
    • 84968923889 scopus 로고    scopus 로고
    • Kim M 2012 Materials and device design for MEMS piezoelectric mechanical vibration energy harvesters Doctoral thesis Massachusetts Institute of Technology
    • (2012) Doctoral Thesis
    • Kim, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.