메뉴 건너뛰기




Volumn 50, Issue 8, 2015, Pages 3237-3245

Preparation and characterization of ethylene-vinyl acetate/halloysite nanotube nanocomposites

Author keywords

[No Author keywords available]

Indexed keywords

CAPILLARY FLOW; ETHYLENE; FIELD EMISSION MICROSCOPES; KAOLINITE; MECHANICAL PROPERTIES; NANOCOMPOSITES; NANOTUBES; OXYGEN; OXYGEN PERMEABLE MEMBRANES; SCANNING ELECTRON MICROSCOPY; VOLATILE FATTY ACIDS; X RAY DIFFRACTION; YARN;

EID: 84928497286     PISSN: 00222461     EISSN: 15734803     Source Type: Journal    
DOI: 10.1007/s10853-015-8891-6     Document Type: Article
Times cited : (73)

References (59)
  • 1
    • 84878777735 scopus 로고    scopus 로고
    • Coefficient of thermal expansion of TiO2 filled EVA based nanocomposites. A new insight about the influence of filler particle size in composites
    • González-Benito J, Castillo E, Caldito JF (2013) Coefficient of thermal expansion of TiO2 filled EVA based nanocomposites. A new insight about the influence of filler particle size in composites. Eur Polym J 49(7):1747–1752
    • (2013) Eur Polym J , vol.49 , Issue.7 , pp. 1747-1752
    • González-Benito, J.1    Castillo, E.2    Caldito, J.F.3
  • 2
    • 84908582385 scopus 로고    scopus 로고
    • Efficient preparation of ultralarge graphene oxide using a PEDOT: PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices
    • Dehsari HS et al (2014) Efficient preparation of ultralarge graphene oxide using a PEDOT: PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices. RSC Advances 4(98):55067–55076
    • (2014) RSC Advances , vol.4 , Issue.98 , pp. 55067-55076
    • Dehsari, H.S.1
  • 3
    • 75749125302 scopus 로고    scopus 로고
    • Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties
    • Spitalsky Z et al (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401
    • (2010) Prog Polym Sci , vol.35 , Issue.3 , pp. 357-401
    • Spitalsky, Z.1
  • 4
    • 0029777844 scopus 로고    scopus 로고
    • Polymer layered silicate nanocomposites
    • Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35
    • (1996) Adv Mater , vol.8 , Issue.1 , pp. 29-35
    • Giannelis, E.P.1
  • 5
    • 84877798539 scopus 로고    scopus 로고
    • Water absorption, mechanical, and thermal properties of halloysite nanotube reinforced vinyl-ester nanocomposites
    • Alhuthali A, Low IM (2013) Water absorption, mechanical, and thermal properties of halloysite nanotube reinforced vinyl-ester nanocomposites. J Mater Sci 48(12):4260–4273. doi:10.1007/s10853-013-7240-x
    • (2013) J Mater Sci , vol.48 , Issue.12 , pp. 4260-4273
    • Alhuthali, A.1    Low, I.M.2
  • 6
    • 84941273134 scopus 로고    scopus 로고
    • Mechanical, thermal, and flame-retardant performance of polyamide 11–halloysite nanotube nanocomposites
    • Hao A et al (2014) Mechanical, thermal, and flame-retardant performance of polyamide 11–halloysite nanotube nanocomposites. J Mater Sci. doi:10.1007/s10853-014-8575-7
    • (2014) J Mater Sci
    • Hao, A.1
  • 7
    • 84907253304 scopus 로고    scopus 로고
    • Recent advance in research on halloysite nanotubes-polymer nanocomposite
    • Liu M et al (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39(8):1498–1525
    • (2014) Prog Polym Sci , vol.39 , Issue.8 , pp. 1498-1525
    • Liu, M.1
  • 8
    • 79955833386 scopus 로고    scopus 로고
    • Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation: experimental
    • Hashemifard SA, Ismail AF, Matsuura T (2011) Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation: experimental. J Colloid Interface Sci 359(2):359–370
    • (2011) J Colloid Interface Sci , vol.359 , Issue.2 , pp. 359-370
    • Hashemifard, S.A.1    Ismail, A.F.2    Matsuura, T.3
  • 9
    • 77951093979 scopus 로고    scopus 로고
    • EPDM/modified halloysite nanocomposites
    • Pasbakhsh P et al (2010) EPDM/modified halloysite nanocomposites. Appl Clay Sci 48(3):405–413
    • (2010) Appl Clay Sci , vol.48 , Issue.3 , pp. 405-413
    • Pasbakhsh, P.1
  • 10
    • 72749113926 scopus 로고    scopus 로고
    • Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes
    • Rooj S et al (2010) Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes. Mater Des 31(4):2151–2156
    • (2010) Mater Des , vol.31 , Issue.4 , pp. 2151-2156
    • Rooj, S.1
  • 11
    • 81155162499 scopus 로고    scopus 로고
    • PHBV nanocomposites based on organomodified montmorillonite and halloysite: the effect of clay type on the morphology and thermal and mechanical properties
    • Carli LN, Crespo JS, Mauler RS (2011) PHBV nanocomposites based on organomodified montmorillonite and halloysite: the effect of clay type on the morphology and thermal and mechanical properties. Compos A Appl Sci Manuf 42(11):1601–1608
    • (2011) Compos A Appl Sci Manuf , vol.42 , Issue.11 , pp. 1601-1608
    • Carli, L.N.1    Crespo, J.S.2    Mauler, R.S.3
  • 12
    • 59149102985 scopus 로고    scopus 로고
    • Novel polyamide nanocomposites based on silicate nanotubes of the mineral halloysite
    • Hedicke-Höchstötter K, Lim GT, Altstädt V (2009) Novel polyamide nanocomposites based on silicate nanotubes of the mineral halloysite. Comp Sci Technol 69(3–4):330–334
    • (2009) Comp Sci Technol , vol.69 , Issue.3-4 , pp. 330-334
    • Hedicke-Höchstötter, K.1    Lim, G.T.2    Altstädt, V.3
  • 13
    • 84905564756 scopus 로고    scopus 로고
    • Polypyrrole-wrapped halloysite nanocomposite and its rheological response under electric fields
    • Jang D, Zhang W, Choi H (2014) Polypyrrole-wrapped halloysite nanocomposite and its rheological response under electric fields. J Mater Sci 49(20):7309–7316. doi:10.1007/s10853-014-8443-5
    • (2014) J Mater Sci , vol.49 , Issue.20 , pp. 7309-7316
    • Jang, D.1    Zhang, W.2    Choi, H.3
  • 14
    • 54249139509 scopus 로고    scopus 로고
    • Toughening epoxies with halloysite nanotubes
    • Deng S et al (2008) Toughening epoxies with halloysite nanotubes. Polymer 49(23):5119–5127
    • (2008) Polymer , vol.49 , Issue.23 , pp. 5119-5127
    • Deng, S.1
  • 15
    • 42649098289 scopus 로고    scopus 로고
    • Natural inorganic nanotubes reinforced epoxy resin nanocomposites
    • Liu M et al (2008) Natural inorganic nanotubes reinforced epoxy resin nanocomposites. J Polym Res 15(3):205–212
    • (2008) J Polym Res , vol.15 , Issue.3 , pp. 205-212
    • Liu, M.1
  • 16
    • 36248953297 scopus 로고    scopus 로고
    • Crystallization behavior and mechanical properties of polypropylene/halloysite composites
    • Ning N-Y et al (2007) Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer 48(25):7374–7384
    • (2007) Polymer , vol.48 , Issue.25 , pp. 7374-7384
    • Ning, N.-Y.1
  • 17
    • 33646175070 scopus 로고    scopus 로고
    • Thermal stability and flame retardant effects of halloysite nanotubes on poly (propylene)
    • Du M, Guo B, Jia D (2006) Thermal stability and flame retardant effects of halloysite nanotubes on poly (propylene). Eur Polym J 42(6):1362–1369
    • (2006) Eur Polym J , vol.42 , Issue.6 , pp. 1362-1369
    • Du, M.1    Guo, B.2    Jia, D.3
  • 18
    • 51449118838 scopus 로고    scopus 로고
    • Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites
    • Ismail H et al (2008) Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym Testing 27(7):841–850
    • (2008) Polym Testing , vol.27 , Issue.7 , pp. 841-850
    • Ismail, H.1
  • 19
    • 67349088440 scopus 로고    scopus 로고
    • Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by sorbic acid
    • Guo B et al (2009) Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by sorbic acid. Appl Surf Sci 255(16):7329–7336
    • (2009) Appl Surf Sci , vol.255 , Issue.16 , pp. 7329-7336
    • Guo, B.1
  • 20
    • 56949086307 scopus 로고    scopus 로고
    • Styrene–butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid
    • Guo B et al (2008) Styrene–butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid. Appl Surf Sci 255(5):2715–2722
    • (2008) Appl Surf Sci , vol.255 , Issue.5 , pp. 2715-2722
    • Guo, B.1
  • 21
    • 53249143953 scopus 로고    scopus 로고
    • Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance
    • Du M et al (2008) Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance. Polymer 49(22):4871–4876
    • (2008) Polymer , vol.49 , Issue.22 , pp. 4871-4876
    • Du, M.1
  • 22
    • 84881172715 scopus 로고    scopus 로고
    • Regenerated cellulose/halloysite nanotube nanocomposite films prepared with an ionic liquid
    • Soheilmoghaddam M et al (2013) Regenerated cellulose/halloysite nanotube nanocomposite films prepared with an ionic liquid. Mater Chem Phys 141(2–3):936–943
    • (2013) Mater Chem Phys , vol.141 , Issue.2-3 , pp. 936-943
    • Soheilmoghaddam, M.1
  • 23
    • 84883646791 scopus 로고    scopus 로고
    • Development of regenerated cellulose/halloysites nanocomposites via ionic liquids
    • Hanid NA et al (2014) Development of regenerated cellulose/halloysites nanocomposites via ionic liquids. Carbohydr Polym 99:91–97
    • (2014) Carbohydr Polym , vol.99 , pp. 91-97
    • Hanid, N.A.1
  • 24
    • 84959099917 scopus 로고    scopus 로고
    • Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites. Polym Comps
    • De Silva RT et al (2014) Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites. Polym Comps. doi:10.1002/pc.23244
    • (2014) doi:10.1002/pc.23244
    • De Silva, R.T.1
  • 25
    • 84861643750 scopus 로고    scopus 로고
    • Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites
    • Schmitt H et al (2012) Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites. Carbohydr Polym 89(3):920–927
    • (2012) Carbohydr Polym , vol.89 , Issue.3 , pp. 920-927
    • Schmitt, H.1
  • 26
    • 79952984383 scopus 로고    scopus 로고
    • A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites
    • Sengupta R et al (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36(5):638–670
    • (2011) Prog Polym Sci , vol.36 , Issue.5 , pp. 638-670
    • Sengupta, R.1
  • 27
    • 77955719437 scopus 로고    scopus 로고
    • Graphene/polymer nanocomposites
    • Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530
    • (2010) Macromolecules , vol.43 , Issue.16 , pp. 6515-6530
    • Kim, H.1    Abdala, A.A.2    Macosko, C.W.3
  • 28
    • 84902383334 scopus 로고    scopus 로고
    • Mechanical, thermal and flammability properties of ethylene-vinyl acetate (EVA)/sepiolite nanocomposites
    • Bidsorkhi HC et al (2014) Mechanical, thermal and flammability properties of ethylene-vinyl acetate (EVA)/sepiolite nanocomposites. Polym Testing 37:117–122
    • (2014) Polym Testing , vol.37 , pp. 117-122
    • Bidsorkhi, H.C.1
  • 29
    • 0035131446 scopus 로고    scopus 로고
    • Synthesis and thermal behaviour of layered silicate–EVA nanocomposites
    • Zanetti M et al (2001) Synthesis and thermal behaviour of layered silicate–EVA nanocomposites. Polymer 42(10):4501–4507
    • (2001) Polymer , vol.42 , Issue.10 , pp. 4501-4507
    • Zanetti, M.1
  • 30
    • 0036064789 scopus 로고    scopus 로고
    • Thermal degradation and rheological behaviour of EVA/montmorillonite nanocomposites
    • Riva A et al (2002) Thermal degradation and rheological behaviour of EVA/montmorillonite nanocomposites. Polym Degrad Stab 77(2):299–304
    • (2002) Polym Degrad Stab , vol.77 , Issue.2 , pp. 299-304
    • Riva, A.1
  • 31
    • 3142664046 scopus 로고    scopus 로고
    • Study on the structure and properties of EVA/clay nanocomposites
    • Tian Y et al (2004) Study on the structure and properties of EVA/clay nanocomposites. J Mater Sci 39(13):4301–4303. doi:10.1023/B:JMSC.0000033412.92494.ee
    • (2004) J Mater Sci , vol.39 , Issue.13 , pp. 4301-4303
    • Tian, Y.1
  • 32
    • 34948866797 scopus 로고    scopus 로고
    • Polymer/carbon nanotube nanocomposites: influence of carbon nanotubes on EVA photodegradation
    • Morlat-Therias S et al (2007) Polymer/carbon nanotube nanocomposites: influence of carbon nanotubes on EVA photodegradation. Polym Degrad Stab 92(10):1873–1882
    • (2007) Polym Degrad Stab , vol.92 , Issue.10 , pp. 1873-1882
    • Morlat-Therias, S.1
  • 33
    • 34047248694 scopus 로고    scopus 로고
    • Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment
    • Kim S et al (2007) Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment. J Membr Sci 294(1–2):147–158
    • (2007) J Membr Sci , vol.294 , Issue.1-2 , pp. 147-158
    • Kim, S.1
  • 34
    • 84881122214 scopus 로고    scopus 로고
    • Effects of halloysite nanotube orientation on crystallization and thermal stability of polypropylene nanocomposites
    • Wang B, Huang H-X (2013) Effects of halloysite nanotube orientation on crystallization and thermal stability of polypropylene nanocomposites. Polym Degrad Stab 98(9):1601–1608
    • (2013) Polym Degrad Stab , vol.98 , Issue.9 , pp. 1601-1608
    • Wang, B.1    Huang, H.-X.2
  • 35
    • 14844309675 scopus 로고    scopus 로고
    • Pyrolysis of polymers in the presence of a commercial clay
    • Marcilla A et al (2005) Pyrolysis of polymers in the presence of a commercial clay. Polym Degrad Stab 88(3):456–460
    • (2005) Polym Degrad Stab , vol.88 , Issue.3 , pp. 456-460
    • Marcilla, A.1
  • 36
    • 54849439377 scopus 로고    scopus 로고
    • Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane
    • Yuan P et al (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112(40):15742–15751
    • (2008) J Phys Chem C , vol.112 , Issue.40 , pp. 15742-15751
    • Yuan, P.1
  • 37
    • 48149086900 scopus 로고    scopus 로고
    • Gas permeation properties of ethylene vinyl acetate–silica nanocomposite membranes
    • Sadeghi M et al (2008) Gas permeation properties of ethylene vinyl acetate–silica nanocomposite membranes. J Membr Sci 322(2):423–428
    • (2008) J Membr Sci , vol.322 , Issue.2 , pp. 423-428
    • Sadeghi, M.1
  • 38
    • 84876821556 scopus 로고    scopus 로고
    • Development of regenerated cellulose/halloysite nanotube bionanocomposite films with ionic liquid
    • Soheilmoghaddam M, Wahit MU (2013) Development of regenerated cellulose/halloysite nanotube bionanocomposite films with ionic liquid. Int J Biol Macromol 58:133–139
    • (2013) Int J Biol Macromol , vol.58 , pp. 133-139
    • Soheilmoghaddam, M.1    Wahit, M.U.2
  • 39
    • 59249091945 scopus 로고    scopus 로고
    • Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites
    • Guo B et al (2009) Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochim Acta 484(1):48–56
    • (2009) Thermochim Acta , vol.484 , Issue.1 , pp. 48-56
    • Guo, B.1
  • 40
    • 79953742334 scopus 로고    scopus 로고
    • Oxygen permeability through poly(ethylene-co-vinyl acetate)/clay nanocomposites prepared by microwave irradiation
    • Urresti O et al (2011) Oxygen permeability through poly(ethylene-co-vinyl acetate)/clay nanocomposites prepared by microwave irradiation. J Membr Sci 373(1–2):173–177
    • (2011) J Membr Sci , vol.373 , Issue.1-2 , pp. 173-177
    • Urresti, O.1
  • 41
    • 84893670443 scopus 로고    scopus 로고
    • Tensile, rheological properties, thermal stability, and morphology of ethylene vinyl acetate copolymer/silica nanocomposites using EVA-g-maleic anhydride. J Comp Mater
    • Hoang T et al (2013) Tensile, rheological properties, thermal stability, and morphology of ethylene vinyl acetate copolymer/silica nanocomposites using EVA-g-maleic anhydride. J Comp Mater. doi:10.1177/0021998313476319
    • (2013) doi:10.1177/0021998313476319
    • Hoang, T.1
  • 42
    • 34848839266 scopus 로고    scopus 로고
    • Pervaporation characteristics of ethylene–vinyl acetate copolymer membranes with different composition for recovery of ethyl acetate from aqueous solution
    • Bai Y et al (2007) Pervaporation characteristics of ethylene–vinyl acetate copolymer membranes with different composition for recovery of ethyl acetate from aqueous solution. J Membr Sci 305(1):152–159
    • (2007) J Membr Sci , vol.305 , Issue.1 , pp. 152-159
    • Bai, Y.1
  • 43
    • 0036150778 scopus 로고    scopus 로고
    • Study of transport of small molecules through ethylene-co-vinyl acetate copolymers films. Part A: Water molecules
    • Devallencourt C et al (2002) Study of transport of small molecules through ethylene-co-vinyl acetate copolymers films. Part A: Water molecules. Polym Testing 21(3):253–262
    • (2002) Polym Testing , vol.21 , Issue.3 , pp. 253-262
    • Devallencourt, C.1
  • 44
    • 47249164728 scopus 로고    scopus 로고
    • Effect of organic peroxides on the morphological, thermal and tensile properties of EVA-organoclay nanocomposites. express
    • Mishra S, Luyt A (2008) Effect of organic peroxides on the morphological, thermal and tensile properties of EVA-organoclay nanocomposites. express. Polym Lett 2:256–264
    • (2008) Polym Lett , vol.2 , pp. 256-264
    • Mishra, S.1    Luyt, A.2
  • 45
    • 84866705026 scopus 로고    scopus 로고
    • Clay intercalation and its influence on the morphology and transport properties of EVA/clay nanocomposites
    • Wilson R et al (2012) Clay intercalation and its influence on the morphology and transport properties of EVA/clay nanocomposites. J Phys Chem C 116(37):20002–20014
    • (2012) J Phys Chem C , vol.116 , Issue.37 , pp. 20002-20014
    • Wilson, R.1
  • 46
    • 0033471992 scopus 로고    scopus 로고
    • Rheological characterization of ethylene vinyl acetate copolymers
    • Arsac A, Carrot C, Guillet J (1999) Rheological characterization of ethylene vinyl acetate copolymers. J Appl Polym Sci 74(11):2625–2630
    • (1999) J Appl Polym Sci , vol.74 , Issue.11 , pp. 2625-2630
    • Arsac, A.1    Carrot, C.2    Guillet, J.3
  • 47
    • 78349313188 scopus 로고    scopus 로고
    • Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature
    • Han D et al (2011) Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydr Polym 83(2):966–972
    • (2011) Carbohydr Polym , vol.83 , Issue.2 , pp. 966-972
    • Han, D.1
  • 48
    • 84890508849 scopus 로고    scopus 로고
    • Characterization of bio regenerated cellulose/sepiolite nanocomposite films prepared via ionic liquid
    • Soheilmoghaddam M et al (2014) Characterization of bio regenerated cellulose/sepiolite nanocomposite films prepared via ionic liquid. Polym Testing 33:121–130
    • (2014) Polym Testing , vol.33 , pp. 121-130
    • Soheilmoghaddam, M.1
  • 49
    • 84898797491 scopus 로고    scopus 로고
    • Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent
    • Soheilmoghaddam M et al (2014) Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent. Carbohydr Polym 106:326–334
    • (2014) Carbohydr Polym , vol.106 , pp. 326-334
    • Soheilmoghaddam, M.1
  • 50
    • 84929656307 scopus 로고    scopus 로고
    • Intumescent flame retardant polyurethane/starch composites: Thermal, mechanical, and rheological properties
    • Gavgani JN et al (2014) Intumescent flame retardant polyurethane/starch composites: Thermal, mechanical, and rheological properties. J Appl Polym Sci 131:41158. doi:10.1002/app.41158
    • (2014) J Appl Polym Sci , vol.131 , pp. 41158
    • Gavgani, J.N.1
  • 51
    • 84861601942 scopus 로고    scopus 로고
    • Modified natural halloysite/potato starch composite films
    • He Y et al (2012) Modified natural halloysite/potato starch composite films. Carbohydr Polym 87(4):2706–2711
    • (2012) Carbohydr Polym , vol.87 , Issue.4 , pp. 2706-2711
    • He, Y.1
  • 52
    • 84865545980 scopus 로고    scopus 로고
    • Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility
    • Liu M et al (2012) Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. Int J Biol Macromol 51(4):566–575
    • (2012) Int J Biol Macromol , vol.51 , Issue.4 , pp. 566-575
    • Liu, M.1
  • 53
    • 84875843183 scopus 로고    scopus 로고
    • Nanocomposites of halloysite and polylactide
    • Liu M, Zhang Y, Zhou C (2013) Nanocomposites of halloysite and polylactide. Appl Clay Sci 75:52–59
    • (2013) Appl Clay Sci , vol.75 , pp. 52-59
    • Liu, M.1    Zhang, Y.2    Zhou, C.3
  • 54
    • 0242509077 scopus 로고    scopus 로고
    • EVA/clay nanocomposite by solution blending: effect of aluminosilicate layers on mechanical and thermal properties
    • Pramanik M et al (2003) EVA/clay nanocomposite by solution blending: effect of aluminosilicate layers on mechanical and thermal properties. Macromol Res 11(4):260–266
    • (2003) Macromol Res , vol.11 , Issue.4 , pp. 260-266
    • Pramanik, M.1
  • 55
    • 78249284622 scopus 로고    scopus 로고
    • Effect of irradiation on mechanical and structural properties of ethylene vinyl acetate copolymers hollow fibers
    • Khodkar F, Ebrahimi NG (2011) Effect of irradiation on mechanical and structural properties of ethylene vinyl acetate copolymers hollow fibers. J Appl Polym Sci 119(4):2085–2092
    • (2011) J Appl Polym Sci , vol.119 , Issue.4 , pp. 2085-2092
    • Khodkar, F.1    Ebrahimi, N.G.2
  • 56
    • 84891344666 scopus 로고    scopus 로고
    • Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties
    • Gavgani J, Adelnia H, Gudarzi M (2014) Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 49(1):243–254. doi:10.1007/s10853-013-7698-6
    • (2014) J Mater Sci , vol.49 , Issue.1 , pp. 243-254
    • Gavgani, J.1    Adelnia, H.2    Gudarzi, M.3
  • 57
    • 84877582758 scopus 로고    scopus 로고
    • Cellulose nanobiocomposites with reinforcement of boron nitride: study of thermal, oxygen barrier and chemical resistant properties
    • Swain SK et al (2013) Cellulose nanobiocomposites with reinforcement of boron nitride: study of thermal, oxygen barrier and chemical resistant properties. Carbohydr Polym 95(2):728–732
    • (2013) Carbohydr Polym , vol.95 , Issue.2 , pp. 728-732
    • Swain, S.K.1
  • 58
    • 0001408681 scopus 로고
    • Gas separation using polymer membranes: an overview
    • Ghosal K, Freeman BD (1994) Gas separation using polymer membranes: an overview. Polym Adv Technol 5(11):673–697
    • (1994) Polym Adv Technol , vol.5 , Issue.11 , pp. 673-697
    • Ghosal, K.1    Freeman, B.D.2
  • 59
    • 84865118673 scopus 로고    scopus 로고
    • Novel polymer nanocomposite hydrogel with natural clay nanotubes
    • Liu M et al (2012) Novel polymer nanocomposite hydrogel with natural clay nanotubes. Colloid Polym Sci 290(10):895–905
    • (2012) Colloid Polym Sci , vol.290 , Issue.10 , pp. 895-905
    • Liu, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.