메뉴 건너뛰기




Volumn 12, Issue 9, 2015, Pages 917-929

Exergy analysis of high-temperature proton exchange membrane fuel cell systems

Author keywords

Energy loss; Exergy analysis; High temperature PEM fuel cell system; Steam methane reforming; System efficiency

Indexed keywords

ENERGY DISSIPATION; EXERGY; FUEL SYSTEMS; GAS FUEL ANALYSIS; HYDROGEN; METHANE; STEAM REFORMING;

EID: 84928478561     PISSN: 15435075     EISSN: 15435083     Source Type: Journal    
DOI: 10.1080/15435075.2014.892004     Document Type: Article
Times cited : (40)

References (38)
  • 1
    • 38049087430 scopus 로고    scopus 로고
    • Fuel cell systems for transportation status and trends
    • Ahluwalia, R.K., and X. Wang. 2008. Fuel cell systems for transportation status and trends. Journal of Power Sources 177 (1): 167-76.
    • (2008) Journal of Power Sources , vol.177 , Issue.1 , pp. 167-176
    • Ahluwalia, R.K.1    Wang, X.2
  • 2
    • 84865459906 scopus 로고    scopus 로고
    • Modeling and simulation of a 100 kWe HT-PEMFC subsystem integrated with an absorption chiller subsystem
    • Arsalis, A. 2012. Modeling and simulation of a 100 kWe HT-PEMFC subsystem integrated with an absorption chiller subsystem. International Journal of Hydrogen Energy 37 (18): 13484-90.
    • (2012) International Journal of Hydrogen Energy , vol.37 , Issue.18 , pp. 13484-13490
    • Arsalis, A.1
  • 3
    • 79551550014 scopus 로고    scopus 로고
    • Modeling and off-design performance of a 1 kWe HT-PEMFC (high-temperature proton exchange membrane fuel cell)-based residential micro-CHP (combined-heat-and-power) system for Danish single-family households balances
    • Arsalis, A., M.P. Nielsen., and S.K. Kær. 2011. Modeling and off-design performance of a 1 kWe HT-PEMFC (high-temperature proton exchange membrane fuel cell)-based residential micro-CHP (combined-heat-and-power) system for Danish single-family households balances. Energy 36 (2): 993-1002.
    • (2011) Energy , vol.36 , Issue.2 , pp. 993-1002
    • Arsalis, A.1    Nielsen, M.P.2    Kær, S.K.3
  • 4
    • 84855845077 scopus 로고    scopus 로고
    • Modeling and optimization of a 1 kWe HT-PEMFC-based micro-CHP residential system
    • Arsalis, A., M.P. Nielsen., and S.K. Kær. 2012. Modeling and optimization of a 1 kWe HT-PEMFC-based micro-CHP residential system. International Journal of Hydrogen Energy 37 (3): 2470-81.
    • (2012) International Journal of Hydrogen Energy , vol.37 , Issue.3 , pp. 2470-2481
    • Arsalis, A.1    Nielsen, M.P.2    Kær, S.K.3
  • 6
    • 0000807817 scopus 로고    scopus 로고
    • Exergy analysis of a fuel cell power system for transportation applications
    • Cownden, R., M. Nahon., and M.A. Rosen. 2001. Exergy analysis of a fuel cell power system for transportation applications. Exergy, An International Journal 1 (2): 112-21.
    • (2001) Exergy, An International Journal , vol.1 , Issue.2 , pp. 112-121
    • Cownden, R.1    Nahon, M.2    Rosen, M.A.3
  • 7
    • 33747261003 scopus 로고    scopus 로고
    • Exergy analysis of an integrated fuel processor and fuel cell (FP-FC) system
    • Delsman, E.R., C.U. Uju, M.H.J.M. de Croon, J.C. Schouten., and K.J. Ptasinski. 2006. Exergy analysis of an integrated fuel processor and fuel cell (FP-FC) system. Energy 31 (15): 3300-9.
    • (2006) Energy , vol.31 , Issue.15 , pp. 3300-3309
    • Delsman, E.R.1    Uju, C.U.2    De Croon, M.H.J.M.3    Schouten, J.C.4    Ptasinski, K.J.5
  • 9
    • 0742302991 scopus 로고    scopus 로고
    • Exergy analysis of polymer electrolyte fuel cell systems using methanol
    • Ishihara, A., S. Mitsushima, N. Kamiya., and K. Ota. 2004. Exergy analysis of polymer electrolyte fuel cell systems using methanol. Journal of Power Sources 126 (1-2): 34-40.
    • (2004) Journal of Power Sources , vol.126 , Issue.12 , pp. 34-40
    • Ishihara, A.1    Mitsushima, S.2    Kamiya, N.3    Ota, K.4
  • 10
    • 84875763494 scopus 로고    scopus 로고
    • Analyzing microcogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances
    • Jannelli, E., M. Minutillo., and A. Perna. 2013. Analyzing microcogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances. Applied Energy 108: 82-91.
    • (2013) Applied Energy , vol.108 , pp. 82-91
    • Jannelli, E.1    Minutillo, M.2    Perna, A.3
  • 11
    • 78649724024 scopus 로고    scopus 로고
    • Three-dimensional non-isothermal modeling of carbon monoxide poisoning in high-temperature proton exchange membrane fuel cells with phosphoric acid-doped polybenzimidazole membranes
    • Jiao, K., I.E. Alaefour., and X. Li. 2011. Three-dimensional non-isothermal modeling of carbon monoxide poisoning in high-temperature proton exchange membrane fuel cells with phosphoric acid-doped polybenzimidazole membranes. Fuel 90 (2): 568-82.
    • (2011) Fuel , vol.90 , Issue.2 , pp. 568-582
    • Jiao, K.1    Alaefour, I.E.2    Li, X.3
  • 12
    • 80053575441 scopus 로고    scopus 로고
    • Development and design of experiments optimization of a high-temperature proton exchange membrane fuel cell auxiliary power unit with onboard fuel processor
    • Karstedta, J., J. Ogrzewallaa, C. Severina., and S. Pischingerb. 2011. Development and design of experiments optimization of a high-temperature proton exchange membrane fuel cell auxiliary power unit with onboard fuel processor. Journal of Power Sources 196 (23): 9998-10009.
    • (2011) Journal of Power Sources , vol.196 , Issue.23 , pp. 9998-10009
    • Karstedta, J.1    Ogrzewallaa, J.2    Severina, C.3    Pischingerb, S.4
  • 13
    • 1642395918 scopus 로고    scopus 로고
    • Exergy analysis of a PEM fuel cell at variable operating conditions
    • Kazim, A. 2004. Exergy analysis of a PEM fuel cell at variable operating conditions. Energy Conversion and Management 45 (11-12): 1949-61.
    • (2004) Energy Conversion and Management , vol.45 , Issue.1112 , pp. 1949-1961
    • Kazim, A.1
  • 15
    • 41549096327 scopus 로고    scopus 로고
    • Part one: A novel model of HTPEM-based micro-combined heat and power fuel cell system
    • Korsgaard, A.R., M.P. Nielsen., and S.K. Kær. 2008a. Part one: A novel model of HTPEM-based micro-combined heat and power fuel cell system. International Journal of Hydrogen Energy 33 (7): 1909-20.
    • (2008) International Journal of Hydrogen Energy , vol.33 , Issue.7 , pp. 1909-1920
    • Korsgaard, A.R.1    Nielsen, M.P.2    Kær, S.K.3
  • 16
    • 41549104141 scopus 로고    scopus 로고
    • Part two: Control of a novel HTPEM-based micro combined heat and power fuel cell system
    • Korsgaard, A.R., M.P. Nielsen., and S.K. Kær. 2008b. Part two: Control of a novel HTPEM-based micro combined heat and power fuel cell system. International Journal of Hydrogen Energy 33 (7): 1921-31.
    • (2008) International Journal of Hydrogen Energy , vol.33 , Issue.7 , pp. 1921-1931
    • Korsgaard, A.R.1    Nielsen, M.P.2    Kær, S.K.3
  • 17
    • 3042814102 scopus 로고    scopus 로고
    • Exergetic and thermoeconomic analysis of a 200-kW phosphoric acid fuel cell plant
    • Kwak, H.Y., H.S. Lee, J.Y. Jung, J.S. Jeon., and D.R Park. 2004. Exergetic and thermoeconomic analysis of a 200-kW phosphoric acid fuel cell plant. Fuel 83 (14-15): 2087-94.
    • (2004) Fuel , vol.83 , Issue.1415 , pp. 2087-2094
    • Kwak, H.Y.1    Lee, H.S.2    Jung, J.Y.3    Jeon, J.S.4    Park, D.R.5
  • 19
    • 84865007274 scopus 로고    scopus 로고
    • Micro humidity sensor for monitoring water flooding in a proton exchange membrane fuel cell
    • Lee, C.Y., W.Y. Fan., and C.P. Chang. 2012. Micro humidity sensor for monitoring water flooding in a proton exchange membrane fuel cell. International Journal of Green Energy 9 (5): 389-97.
    • (2012) International Journal of Green Energy , vol.9 , Issue.5 , pp. 389-397
    • Lee, C.Y.1    Fan, W.Y.2    Chang, C.P.3
  • 21
    • 33846847955 scopus 로고    scopus 로고
    • Exergoeconomic analysis of a vehicular PEM fuel cell system
    • Mert, S.O., I. Dincer., and Z. Ozcelik. 2007. Exergoeconomic analysis of a vehicular PEM fuel cell system. Journal of Power Sources 165 (1): 244-52.
    • (2007) Journal of Power Sources , vol.165 , Issue.1 , pp. 244-252
    • Mert, S.O.1    Dincer, I.2    Ozcelik, Z.3
  • 22
    • 0032444296 scopus 로고    scopus 로고
    • Dynamic characteristics of phosphoric-acid fuel-cell stack cooling system
    • Miki, H., and A. Shimizu. 1998. Dynamic characteristics of phosphoric-acid fuel-cell stack cooling system. Applied Energy 61 (1): 41-56.
    • (1998) Applied Energy , vol.61 , Issue.1 , pp. 41-56
    • Miki, H.1    Shimizu, A.2
  • 23
    • 42749091528 scopus 로고    scopus 로고
    • Exergy analysis of a regional-distributed PEM fuel cell system
    • Obara, S., and I. Tanno. 2008. Exergy analysis of a regional-distributed PEM fuel cell system. International Journal of Hydrogen Energy 33 (9): 2300-10.
    • (2008) International Journal of Hydrogen Energy , vol.33 , Issue.9 , pp. 2300-2310
    • Obara, S.1    Tanno, I.2
  • 30
    • 79952282369 scopus 로고    scopus 로고
    • Pumpless thermal management of water-cooled high-temperature proton exchange membrane fuel cells
    • Song, T.W., K.H. Choi, J.R. Kim., and J.S. Yi. 2011. Pumpless thermal management of water-cooled high-temperature proton exchange membrane fuel cells. Journal of Power Sources 196 (10): 4671-9.
    • (2011) Journal of Power Sources , vol.196 , Issue.10 , pp. 4671-4679
    • Song, T.W.1    Choi, K.H.2    Kim, J.R.3    Yi, J.S.4
  • 31
    • 76449109358 scopus 로고    scopus 로고
    • Internal combustion engine (ICE) bottoming with organic rankine cycles (ORCs)
    • Vaja, I., and A. Gambarotta. 2010. Internal combustion engine (ICE) bottoming with organic rankine cycles (ORCs). Energy 35 (2): 1084-93.
    • (2010) Energy , vol.35 , Issue.2 , pp. 1084-1093
    • Vaja, I.1    Gambarotta, A.2
  • 32
    • 7544231743 scopus 로고    scopus 로고
    • Fundamental models for fuel cell engineering
    • Wang, C. 2004. Fundamental models for fuel cell engineering. Chemical Reviews 104 (10): 4727-66.
    • (2004) Chemical Reviews , vol.104 , Issue.10 , pp. 4727-4766
    • Wang, C.1
  • 33
    • 84861768810 scopus 로고    scopus 로고
    • Performance analysis of a novel system combining a dual loop organic Rankine cycle (ORC) with a gasoline engine
    • Wang, E., H. Zhang, Y. Zhao, B. Fan, Y. Wu., and Q. Mu. 2012. Performance analysis of a novel system combining a dual loop organic Rankine cycle (ORC) with a gasoline engine. Energy 43 (1): 385-95.
    • (2012) Energy , vol.43 , Issue.1 , pp. 385-395
    • Wang, E.1    Zhang, H.2    Zhao, Y.3    Fan, B.4    Wu, Y.5    Mu, Q.6
  • 35
    • 0010566838 scopus 로고
    • Dalian, China: Dalian University of Technology Press
    • Yao, P. 1995. Total process energy integration. Dalian, China: Dalian University of Technology Press.
    • (1995) Total Process Energy Integration
    • Yao, P.1
  • 36
    • 84855844928 scopus 로고    scopus 로고
    • A critical review of cooling techniques in proton exchange membrane fuel cell stacks
    • Zhang, G., and S.G. Kandlikar. 2012. A critical review of cooling techniques in proton exchange membrane fuel cell stacks. International Journal of Hydrogen Energy 37 (3): 2412-29.
    • (2012) International Journal of Hydrogen Energy , vol.37 , Issue.3 , pp. 2412-2429
    • Zhang, G.1    Kandlikar, S.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.