-
1
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon, and A. Elisseeff An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
2
-
-
0013326060
-
Feature selection for classification
-
M. Dash, and H. Liu Feature selection for classification Intell. Data Anal. 1 3 1997 131 156
-
(1997)
Intell. Data Anal.
, vol.1
, Issue.3
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
3
-
-
84888352153
-
Filter-based optimization techniques for selection of feature subsets in ensemble systems
-
L.E.A.S. Santana, and A.M.P. Canuto Filter-based optimization techniques for selection of feature subsets in ensemble systems Expert Syst. Appl. 41 4 2014 1622 1631
-
(2014)
Expert Syst. Appl.
, vol.41
, Issue.4
, pp. 1622-1631
-
-
Santana, L.E.A.S.1
Canuto, A.M.P.2
-
4
-
-
33244485264
-
Non-parametric classifier-independent feature selection
-
N. Abe, and M. Kudo Non-parametric classifier-independent feature selection Pattern Recognit. 39 5 2006 737 746
-
(2006)
Pattern Recognit.
, vol.39
, Issue.5
, pp. 737-746
-
-
Abe, N.1
Kudo, M.2
-
5
-
-
33947220823
-
Feature subset selection and ranking for data dimensionality reduction
-
H.L. Wei, and S.A. Billings Feature subset selection and ranking for data dimensionality reduction IEEE Trans. Pattern Anal. Mach. Intell. 29 1 2007 162 166
-
(2007)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.29
, Issue.1
, pp. 162-166
-
-
Wei, H.L.1
Billings, S.A.2
-
6
-
-
64749086339
-
A wrapper method for feature selection using support vector machines
-
S. Maldonado, and R. Weber A wrapper method for feature selection using support vector machines Inf. Sci. 179 13 2009 2208 2217
-
(2009)
Inf. Sci.
, vol.179
, Issue.13
, pp. 2208-2217
-
-
Maldonado, S.1
Weber, R.2
-
7
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines Mach. Learn. 46 1-3 2002 389 422
-
(2002)
Mach. Learn.
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
8
-
-
34250896121
-
Markov blanket-embedded genetic algorithm for gene selection
-
Z. Zhu, Y.S. Ong, and M. Dash Markov blanket-embedded genetic algorithm for gene selection Pattern Recognit. 40 11 2007 3236 3248
-
(2007)
Pattern Recognit.
, vol.40
, Issue.11
, pp. 3236-3248
-
-
Zhu, Z.1
Ong, Y.S.2
Dash, M.3
-
9
-
-
79551682436
-
Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data
-
P. Maji, and S. Paul Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data Int. J. Approx. Reasoning 52 3 2011 408 426
-
(2011)
Int. J. Approx. Reasoning
, vol.52
, Issue.3
, pp. 408-426
-
-
Maji, P.1
Paul, S.2
-
13
-
-
14344249891
-
Testing the significance of attribute interactions
-
A. Jakulin, I. Bratko, Testing the significance of attribute interactions, in: Proceedings of the Twenty-first International Conference on Machine Learning, ACM, 2004, pp. 409-416.
-
(2004)
Proceedings of the Twenty-first International Conference on Machine Learning, ACM
, pp. 409-416
-
-
Jakulin, A.1
Bratko, I.2
-
16
-
-
0141990695
-
Theoretical and empirical analysis of ReliefF and RReliefF
-
M. Robnik-Šikonja, and I. Kononenko Theoretical and empirical analysis of ReliefF and RReliefF Mach. Learn. 53 1-2 2003 23 69
-
(2003)
Mach. Learn.
, vol.53
, Issue.1-2
, pp. 23-69
-
-
Robnik-Šikonja, M.1
Kononenko, I.2
-
17
-
-
84992726552
-
Estimating attributes: analysis and extensions of RELIEF
-
Springer Berlin, Heidelberg
-
I. Kononenko Estimating attributes: analysis and extensions of RELIEF, in: Machine Learning: ECML-94 1994 Springer Berlin, Heidelberg 171 182
-
(1994)
Machine Learning: ECML-94
, pp. 171-182
-
-
Kononenko, I.1
-
19
-
-
0242302657
-
Consistency-based search in feature selection
-
M. Dash, and H. Liu Consistency-based search in feature selection Artif. Intell. 151 1 2003 155 176
-
(2003)
Artif. Intell.
, vol.151
, Issue.1
, pp. 155-176
-
-
Dash, M.1
Liu, H.2
-
20
-
-
62349118015
-
Feature selection with dynamic mutual information
-
H. Liu, J. Sun, L. Liu, and H. Zhang Feature selection with dynamic mutual information Pattern Recognit. 42 7 2009 1330 1339
-
(2009)
Pattern Recognit.
, vol.42
, Issue.7
, pp. 1330-1339
-
-
Liu, H.1
Sun, J.2
Liu, L.3
Zhang, H.4
-
22
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
R. Battiti Using mutual information for selecting features in supervised neural net learning IEEE Trans. Neural Netw. 5 1994 537 550
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, pp. 537-550
-
-
Battiti, R.1
-
23
-
-
24344458137
-
Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
-
H. Peng, F. Long, and C. Ding Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy IEEE Trans. Pattern Anal. Mach. Intell. 27 8 2005 1226 1238
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
24
-
-
33645690579
-
Fast binary feature selection with conditional mutual information
-
F. Fleuret Fast binary feature selection with conditional mutual information J. Mach. Learn. Res. 5 2004 1531 1555
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1531-1555
-
-
Fleuret, F.1
-
25
-
-
58149465401
-
An efficient gene selection algorithm based on mutual information
-
R. Cai, Z. Hao, X. Yang, and W. Wen An efficient gene selection algorithm based on mutual information Neurocomputing 72 4 2009 991 999
-
(2009)
Neurocomputing
, vol.72
, Issue.4
, pp. 991-999
-
-
Cai, R.1
Hao, Z.2
Yang, X.3
Wen, W.4
-
26
-
-
18744400819
-
Feature selection with conditional mutual information maximum in text categorization
-
G. Wang, F.H. Lochovsky, Feature selection with conditional mutual information maximum in text categorization, in: Proceedings of the Thirteenth International Conference on Information and Knowledge Management, ACM, 2004, pp. 342-349.
-
(2004)
Proceedings of the Thirteenth International Conference on Information and Knowledge Management, ACM
, pp. 342-349
-
-
Wang, G.1
Lochovsky, F.H.2
-
27
-
-
74749091012
-
Learning to classify by ongoing feature selection
-
D. Levi, and S. Ullman Learning to classify by ongoing feature selection Image Vis. Comput. 28 4 2010 715 723
-
(2010)
Image Vis. Comput.
, vol.28
, Issue.4
, pp. 715-723
-
-
Levi, D.1
Ullman, S.2
-
28
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
L. Yu, and H. Liu Efficient feature selection via analysis of relevance and redundancy J. Mach. Learn. Res. 5 2004 1205 1224
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
29
-
-
84870441851
-
A fast clustering-based feature subset selection algorithm for high-dimensional data
-
Q. Song, J. Ni, and G. Wang A fast clustering-based feature subset selection algorithm for high-dimensional data IEEE Trans. Knowl. Data Eng. 25 1 2013 1 14
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.1
, pp. 1-14
-
-
Song, Q.1
Ni, J.2
Wang, G.3
-
30
-
-
65449184542
-
Searching for interacting features in subset selection
-
Z. Zhao, and H. Liu Searching for interacting features in subset selection Intell. Data Anal. 13 2 2009 207 228
-
(2009)
Intell. Data Anal.
, vol.13
, Issue.2
, pp. 207-228
-
-
Zhao, Z.1
Liu, H.2
-
31
-
-
84866031290
-
Selecting feature subset for high dimension data via the propositional FOIL rules
-
G. Wang, Q. Song, B. Xu, and Y. Zhou Selecting feature subset for high dimension data via the propositional FOIL rules Pattern Recognit. 46 2013 199 214
-
(2013)
Pattern Recognit.
, vol.46
, pp. 199-214
-
-
Wang, G.1
Song, Q.2
Xu, B.3
Zhou, Y.4
-
33
-
-
85099325734
-
Irrelevant features and the subset selection problem
-
G.H. John, R. Kohavi, K. Pfleger, Irrelevant features and the subset selection problem, In: Proceedings of the Eleventh International Conference on Machine Learning, 1994, pp. 121-129.
-
(1994)
Proceedings of the Eleventh International Conference on Machine Learning
, pp. 121-129
-
-
John, G.H.1
Kohavi, R.2
Pfleger, K.3
-
36
-
-
0002801737
-
Multivariate information transmission
-
W.J. McGill Multivariate information transmission Psychometrika 19 2 1954 97 116
-
(1954)
Psychometrika
, vol.19
, Issue.2
, pp. 97-116
-
-
McGill, W.J.1
-
39
-
-
0025725905
-
Instance-based learning algorithms
-
D.W. Aha, D. Kibler, and M.K. Albert Instance-based learning algorithms Mach. Learn. 6 1 1991 37 66
-
(1991)
Mach. Learn.
, vol.6
, Issue.1
, pp. 37-66
-
-
Aha, D.W.1
Kibler, D.2
Albert, M.K.3
-
43
-
-
4444353068
-
A comparison of several approaches to missing attribute values in data mining
-
Wojciech Ziarko, Yiyu Yao, Springer Berlin Heidelberg
-
J.W. Grzymala-Busse, and M. Hu A comparison of several approaches to missing attribute values in data mining Wojciech Ziarko, Yiyu Yao, Rough Sets and Current Trends in Computing 2001 Springer Berlin Heidelberg 378 385
-
(2001)
Rough Sets and Current Trends in Computing
, pp. 378-385
-
-
Grzymala-Busse, J.W.1
Hu, M.2
|