메뉴 건너뛰기




Volumn 48, Issue 8, 2015, Pages 2656-2666

A novel feature selection method considering feature interaction

Author keywords

Feature interaction; Feature selection; Filter method; Interaction weight factor

Indexed keywords

CLASSIFICATION (OF INFORMATION); INFORMATION THEORY;

EID: 84928275828     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2015.02.025     Document Type: Article
Times cited : (160)

References (43)
  • 1
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon, and A. Elisseeff An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 2
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash, and H. Liu Feature selection for classification Intell. Data Anal. 1 3 1997 131 156
    • (1997) Intell. Data Anal. , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 3
    • 84888352153 scopus 로고    scopus 로고
    • Filter-based optimization techniques for selection of feature subsets in ensemble systems
    • L.E.A.S. Santana, and A.M.P. Canuto Filter-based optimization techniques for selection of feature subsets in ensemble systems Expert Syst. Appl. 41 4 2014 1622 1631
    • (2014) Expert Syst. Appl. , vol.41 , Issue.4 , pp. 1622-1631
    • Santana, L.E.A.S.1    Canuto, A.M.P.2
  • 4
    • 33244485264 scopus 로고    scopus 로고
    • Non-parametric classifier-independent feature selection
    • N. Abe, and M. Kudo Non-parametric classifier-independent feature selection Pattern Recognit. 39 5 2006 737 746
    • (2006) Pattern Recognit. , vol.39 , Issue.5 , pp. 737-746
    • Abe, N.1    Kudo, M.2
  • 5
    • 33947220823 scopus 로고    scopus 로고
    • Feature subset selection and ranking for data dimensionality reduction
    • H.L. Wei, and S.A. Billings Feature subset selection and ranking for data dimensionality reduction IEEE Trans. Pattern Anal. Mach. Intell. 29 1 2007 162 166
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.1 , pp. 162-166
    • Wei, H.L.1    Billings, S.A.2
  • 6
    • 64749086339 scopus 로고    scopus 로고
    • A wrapper method for feature selection using support vector machines
    • S. Maldonado, and R. Weber A wrapper method for feature selection using support vector machines Inf. Sci. 179 13 2009 2208 2217
    • (2009) Inf. Sci. , vol.179 , Issue.13 , pp. 2208-2217
    • Maldonado, S.1    Weber, R.2
  • 7
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines Mach. Learn. 46 1-3 2002 389 422
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 8
    • 34250896121 scopus 로고    scopus 로고
    • Markov blanket-embedded genetic algorithm for gene selection
    • Z. Zhu, Y.S. Ong, and M. Dash Markov blanket-embedded genetic algorithm for gene selection Pattern Recognit. 40 11 2007 3236 3248
    • (2007) Pattern Recognit. , vol.40 , Issue.11 , pp. 3236-3248
    • Zhu, Z.1    Ong, Y.S.2    Dash, M.3
  • 9
    • 79551682436 scopus 로고    scopus 로고
    • Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data
    • P. Maji, and S. Paul Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data Int. J. Approx. Reasoning 52 3 2011 408 426
    • (2011) Int. J. Approx. Reasoning , vol.52 , Issue.3 , pp. 408-426
    • Maji, P.1    Paul, S.2
  • 16
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • M. Robnik-Šikonja, and I. Kononenko Theoretical and empirical analysis of ReliefF and RReliefF Mach. Learn. 53 1-2 2003 23 69
    • (2003) Mach. Learn. , vol.53 , Issue.1-2 , pp. 23-69
    • Robnik-Šikonja, M.1    Kononenko, I.2
  • 17
    • 84992726552 scopus 로고
    • Estimating attributes: analysis and extensions of RELIEF
    • Springer Berlin, Heidelberg
    • I. Kononenko Estimating attributes: analysis and extensions of RELIEF, in: Machine Learning: ECML-94 1994 Springer Berlin, Heidelberg 171 182
    • (1994) Machine Learning: ECML-94 , pp. 171-182
    • Kononenko, I.1
  • 19
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • M. Dash, and H. Liu Consistency-based search in feature selection Artif. Intell. 151 1 2003 155 176
    • (2003) Artif. Intell. , vol.151 , Issue.1 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 20
    • 62349118015 scopus 로고    scopus 로고
    • Feature selection with dynamic mutual information
    • H. Liu, J. Sun, L. Liu, and H. Zhang Feature selection with dynamic mutual information Pattern Recognit. 42 7 2009 1330 1339
    • (2009) Pattern Recognit. , vol.42 , Issue.7 , pp. 1330-1339
    • Liu, H.1    Sun, J.2    Liu, L.3    Zhang, H.4
  • 22
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • R. Battiti Using mutual information for selecting features in supervised neural net learning IEEE Trans. Neural Netw. 5 1994 537 550
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 537-550
    • Battiti, R.1
  • 23
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, and C. Ding Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy IEEE Trans. Pattern Anal. Mach. Intell. 27 8 2005 1226 1238
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 24
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • F. Fleuret Fast binary feature selection with conditional mutual information J. Mach. Learn. Res. 5 2004 1531 1555
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 25
    • 58149465401 scopus 로고    scopus 로고
    • An efficient gene selection algorithm based on mutual information
    • R. Cai, Z. Hao, X. Yang, and W. Wen An efficient gene selection algorithm based on mutual information Neurocomputing 72 4 2009 991 999
    • (2009) Neurocomputing , vol.72 , Issue.4 , pp. 991-999
    • Cai, R.1    Hao, Z.2    Yang, X.3    Wen, W.4
  • 27
    • 74749091012 scopus 로고    scopus 로고
    • Learning to classify by ongoing feature selection
    • D. Levi, and S. Ullman Learning to classify by ongoing feature selection Image Vis. Comput. 28 4 2010 715 723
    • (2010) Image Vis. Comput. , vol.28 , Issue.4 , pp. 715-723
    • Levi, D.1    Ullman, S.2
  • 28
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • L. Yu, and H. Liu Efficient feature selection via analysis of relevance and redundancy J. Mach. Learn. Res. 5 2004 1205 1224
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 29
    • 84870441851 scopus 로고    scopus 로고
    • A fast clustering-based feature subset selection algorithm for high-dimensional data
    • Q. Song, J. Ni, and G. Wang A fast clustering-based feature subset selection algorithm for high-dimensional data IEEE Trans. Knowl. Data Eng. 25 1 2013 1 14
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.1 , pp. 1-14
    • Song, Q.1    Ni, J.2    Wang, G.3
  • 30
    • 65449184542 scopus 로고    scopus 로고
    • Searching for interacting features in subset selection
    • Z. Zhao, and H. Liu Searching for interacting features in subset selection Intell. Data Anal. 13 2 2009 207 228
    • (2009) Intell. Data Anal. , vol.13 , Issue.2 , pp. 207-228
    • Zhao, Z.1    Liu, H.2
  • 31
    • 84866031290 scopus 로고    scopus 로고
    • Selecting feature subset for high dimension data via the propositional FOIL rules
    • G. Wang, Q. Song, B. Xu, and Y. Zhou Selecting feature subset for high dimension data via the propositional FOIL rules Pattern Recognit. 46 2013 199 214
    • (2013) Pattern Recognit. , vol.46 , pp. 199-214
    • Wang, G.1    Song, Q.2    Xu, B.3    Zhou, Y.4
  • 32
    • 0024732990 scopus 로고
    • Models of incremental concept formation
    • J.H. Gennari, P. Langley, and D. Fisher Models of incremental concept formation Artif. Intell. 40 1 1989 11 61
    • (1989) Artif. Intell. , vol.40 , Issue.1 , pp. 11-61
    • Gennari, J.H.1    Langley, P.2    Fisher, D.3
  • 36
    • 0002801737 scopus 로고
    • Multivariate information transmission
    • W.J. McGill Multivariate information transmission Psychometrika 19 2 1954 97 116
    • (1954) Psychometrika , vol.19 , Issue.2 , pp. 97-116
    • McGill, W.J.1
  • 39
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • D.W. Aha, D. Kibler, and M.K. Albert Instance-based learning algorithms Mach. Learn. 6 1 1991 37 66
    • (1991) Mach. Learn. , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 43
    • 4444353068 scopus 로고    scopus 로고
    • A comparison of several approaches to missing attribute values in data mining
    • Wojciech Ziarko, Yiyu Yao, Springer Berlin Heidelberg
    • J.W. Grzymala-Busse, and M. Hu A comparison of several approaches to missing attribute values in data mining Wojciech Ziarko, Yiyu Yao, Rough Sets and Current Trends in Computing 2001 Springer Berlin Heidelberg 378 385
    • (2001) Rough Sets and Current Trends in Computing , pp. 378-385
    • Grzymala-Busse, J.W.1    Hu, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.