-
1
-
-
20044377408
-
Patterns of Treatment Effects in Subsets of Patients in Clinical Trials
-
M.Bonetti,, and R.D.Gelber, (2004), “Patterns of Treatment Effects in Subsets of Patients in Clinical Trials,” Biostatistics, 5, 465–481.
-
(2004)
Biostatistics
, vol.5
, pp. 465-481
-
-
Bonetti, M.1
Gelber, R.D.2
-
2
-
-
79953133534
-
Analysis of Randomized Comparative Clinical Trial Data for Personalized Treatment Selections
-
T.Cai,, L.Tian,, P.H.Wong,, and L.Wei, (2011), “Analysis of Randomized Comparative Clinical Trial Data for Personalized Treatment Selections,” Biostatistics, 12, 270–282.
-
(2011)
Biostatistics
, vol.12
, pp. 270-282
-
-
Cai, T.1
Tian, L.2
Wong, P.H.3
Wei, L.4
-
3
-
-
0038044767
-
Tests for Homogeneity in Normal Mixtures in the Presence of a Structural Parameter
-
H.Chen,, and J.Chen, (2003), “Tests for Homogeneity in Normal Mixtures in the Presence of a Structural Parameter,” Statistica Sinica, 13, 351–365.
-
(2003)
Statistica Sinica
, vol.13
, pp. 351-365
-
-
Chen, H.1
Chen, J.2
-
4
-
-
0035648075
-
A Modified Likelihood Ratio Test for Homogeneity in Finite Mixture Models
-
H.Chen,, J.Chen,, and J.D.Kalbfleisch, (2001), “A Modified Likelihood Ratio Test for Homogeneity in Finite Mixture Models,” Journal of the Royal Statistical Society, Series B, 63, 19–29.
-
(2001)
Journal of the Royal Statistical Society, Series B
, vol.63
, pp. 19-29
-
-
Chen, H.1
Chen, J.2
Kalbfleisch, J.D.3
-
5
-
-
69049102096
-
Hypothesis Test for Normal Mixture Models: The EM Approach
-
J.Chen,, and P.Li, (2009), “Hypothesis Test for Normal Mixture Models: The EM Approach,” The Annals of Statistics, 37, 2523–2542.
-
(2009)
The Annals of Statistics
, vol.37
, pp. 2523-2542
-
-
Chen, J.1
Li, P.2
-
6
-
-
85006564237
-
Maximum Likelihood From Incomplete Data via the EM Algorithm
-
A.Dempster,, N.Laird,, and D.Rubin, (1977), “Maximum Likelihood From Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society, Series B, 39, 1–38.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
7
-
-
80053563163
-
Subgroup Identification From Randomized Clinical Trial Data
-
J.C.Foster,, J.M.Taylor,, and S.J.Ruberg, (2011), “Subgroup Identification From Randomized Clinical Trial Data,” Statistics in Medicine, 30, 2867–2880.
-
(2011)
Statistics in Medicine
, vol.30
, pp. 2867-2880
-
-
Foster, J.C.1
Taylor, J.M.2
Ruberg, S.J.3
-
8
-
-
0009129790
-
Adaptively Growing Hierarchical Mixtures of Experts
-
Cambridge, MA: MIT Press
-
J.Fritsch,, M.Finke,, and A.Waibel, (1997), “Adaptively Growing Hierarchical Mixtures of Experts,” in Advances in Neural Information Processing Systems 9, Cambridge, MA: MIT Press, pp. 459–465.
-
(1997)
Advances in Neural Information Processing Systems 9
, pp. 459-465
-
-
Fritsch, J.1
Finke, M.2
Waibel, A.3
-
9
-
-
0000471936
-
Testing in Normal Mixture Models When the Proportions are Known
-
B.Goeffinet,, P.Loisel,, and B.Laurent, (1992), “Testing in Normal Mixture Models When the Proportions are Known,” Biometrika, 79, 842–846.
-
(1992)
Biometrika
, vol.79
, pp. 842-846
-
-
Goeffinet, B.1
Loisel, P.2
Laurent, B.3
-
10
-
-
0442268112
-
A Controlled Trial of Two Nucleoside Analogues Plus Indinavir in Persons With Human Immunodeficiency Virus Infection and CD4 Cell Counts of 200 Per Cubic Millimeter or Less
-
S.Hammer,, K.Squires,, M.Hughes,, J.Grimes,, (1997), “A Controlled Trial of Two Nucleoside Analogues Plus Indinavir in Persons With Human Immunodeficiency Virus Infection and CD4 Cell Counts of 200 Per Cubic Millimeter or Less,” The New England Journal of Medicine, 337, 725–733.
-
(1997)
The New England Journal of Medicine
, vol.337
, pp. 725-733
-
-
Hammer, S.1
Squires, K.2
Hughes, M.3
Grimes, J.4
-
11
-
-
0000091003
-
Asymptotic Properties of Non-Linear Least Squares Estimator
-
R.I.Jennrich, (1969), “Asymptotic Properties of Non-Linear Least Squares Estimator,” The Annals of Mathematical Statistics, 40, 633–643.
-
(1969)
The Annals of Mathematical Statistics
, vol.40
, pp. 633-643
-
-
Jennrich, R.I.1
-
12
-
-
0033248628
-
Hierarchical Mixtures-of-Experts for Exponential Family Regression Models: Approximation and Maximum Likelihood Estimation
-
W.Jiang,, and M.A.Tanner, (1999a), “Hierarchical Mixtures-of-Experts for Exponential Family Regression Models: Approximation and Maximum Likelihood Estimation,” The Annals of Statistics, 27, 987–1011.
-
(1999)
The Annals of Statistics
, vol.27
, pp. 987-1011
-
-
Jiang, W.1
Tanner, M.A.2
-
13
-
-
0033161418
-
On the Approximation Rate of Hierarchical Mixtures-of-Experts for Generalized Linear Models
-
——— (1999b), “On the Approximation Rate of Hierarchical Mixtures-of-Experts for Generalized Linear Models,” Neural Computation, 11, 1183–1198.
-
(1999)
Neural Computation
, vol.11
, pp. 1183-1198
-
-
-
14
-
-
0032863989
-
On the Identifiability of Mixtures-of-Experts
-
——— (1999c), “On the Identifiability of Mixtures-of-Experts,” Neural Networks, 12, 1253–1258.
-
(1999)
Neural Networks
, vol.12
, pp. 1253-1258
-
-
-
15
-
-
0000262562
-
Hierarchical Mixtures of Experts and the EM Algorithm
-
M.I.Jordan,, and R.A.Jacobs, (1994), “Hierarchical Mixtures of Experts and the EM Algorithm,” Neural Computation, 6, 181–214.
-
(1994)
Neural Computation
, vol.6
, pp. 181-214
-
-
Jordan, M.I.1
Jacobs, R.A.2
-
16
-
-
84928245427
-
-
Working Paper
-
Y.Jung,, J.Hu,, and X.He, (2012), “Detection of Cancer Subgroup Associated Alternative Splicing in Exon Tiling Arrays,” Working Paper.
-
(2012)
Detection of Cancer Subgroup Associated Alternative Splicing in Exon Tiling Arrays
-
-
Jung, Y.1
Hu, J.2
He, X.3
-
18
-
-
78649409369
-
Testing the Order of a Finite Mixture
-
P.Li,, and J.Chen, (2010), “Testing the Order of a Finite Mixture,” Journal of the American Statistical Association, 105, 1084–1092.
-
(2010)
Journal of the American Statistical Association
, vol.105
, pp. 1084-1092
-
-
Li, P.1
Chen, J.2
-
19
-
-
0038183179
-
Testing the Number of Components in a Normal Mixture
-
Y.Lo,, N.R.Mendell,, and D.B.Rubin, (2001), “Testing the Number of Components in a Normal Mixture,” Biometrika, 88, 767–778.
-
(2001)
Biometrika
, vol.88
, pp. 767-778
-
-
Lo, Y.1
Mendell, N.R.2
Rubin, D.B.3
-
20
-
-
0001044972
-
Finding the Observed Information Matrix When Using the EM Algorithm
-
T.A.Louis, (1982), “Finding the Observed Information Matrix When Using the EM Algorithm,” Journal of the Royal Statistical Society, Series B, 44, 226–233.
-
(1982)
Journal of the Royal Statistical Society, Series B
, vol.44
, pp. 226-233
-
-
Louis, T.A.1
-
21
-
-
65649106924
-
Multilevel Regression Mixture Analysis
-
B.Muthén,, and T.Asparouhov, (2009), “Multilevel Regression Mixture Analysis,” Journal of the Royal Statistical Society, Series A, 172, 639–657.
-
(2009)
Journal of the Royal Statistical Society, Series A
, vol.172
, pp. 639-657
-
-
Muthén, B.1
Asparouhov, T.2
-
22
-
-
0032969449
-
Finite Mixture Modeling With Mixture Outcomes Using the EM Algorithm
-
B.Muthén,, and K.Shedden, (1999), “Finite Mixture Modeling With Mixture Outcomes Using the EM Algorithm,” Biometrics, 55, 463–469.
-
(1999)
Biometrics
, vol.55
, pp. 463-469
-
-
Muthén, B.1
Shedden, K.2
-
23
-
-
0030327271
-
Bayesian Inference in Mixtures-of-Experts and Hierarchical Mixtures-of-Experts Models With an Application to Speech Recognition
-
F.Peng,, R.A.Jacobs,, and M.A.Tanner, (1996), “Bayesian Inference in Mixtures-of-Experts and Hierarchical Mixtures-of-Experts Models With an Application to Speech Recognition,” Journal of the American Statistical Association, 91, 953–960.
-
(1996)
Journal of the American Statistical Association
, vol.91
, pp. 953-960
-
-
Peng, F.1
Jacobs, R.A.2
Tanner, M.A.3
-
24
-
-
10944237674
-
Evaluating Markers for Selecting a Patient’s Treatment
-
X.Song,, and M.S.Pepe, (2004), “Evaluating Markers for Selecting a Patient’s Treatment,” Biometrics, 60, 874–883.
-
(2004)
Biometrics
, vol.60
, pp. 874-883
-
-
Song, X.1
Pepe, M.S.2
-
25
-
-
0036887504
-
Bayesian Model Search for Mixture Models Based on Optimizing Variational Bounds
-
N.Ueda,, and Z.Ghahramani, (2002), “Bayesian Model Search for Mixture Models Based on Optimizing Variational Bounds,” Neural Networks, 15, 1223–1241.
-
(2002)
Neural Networks
, vol.15
, pp. 1223-1241
-
-
Ueda, N.1
Ghahramani, Z.2
-
26
-
-
0004272666
-
-
Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge, UK: Cambridge University Press
-
A.W.van der Vaart, (1998), Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge, UK: Cambridge University Press.
-
(1998)
Asymptotic Statistics
-
-
van der Vaart, A.W.1
-
27
-
-
0005884541
-
On a Logistic Mixture Autoregressive Model
-
C.S.Wong,, and W.K.Li, (2001), “On a Logistic Mixture Autoregressive Model,” Biometrika, 88, 833–846.
-
(2001)
Biometrika
, vol.88
, pp. 833-846
-
-
Wong, C.S.1
Li, W.K.2
-
28
-
-
84865843918
-
Twenty Years of Mixture of Experts
-
S.E.Yuksel,, J.N.Wilson,, and P.D.Gader, (2012), “Twenty Years of Mixture of Experts,” IEEE Transactions on Neural Networks and Learning Systems, 23, 1177–1193.
-
(2012)
IEEE Transactions on Neural Networks and Learning Systems
, vol.23
, pp. 1177-1193
-
-
Yuksel, S.E.1
Wilson, J.N.2
Gader, P.D.3
-
29
-
-
84890112672
-
Effectively Selecting a Target Population for a Future Comparative Study
-
L.Zhao,, L.Tian,, T.Cai,, B.Claggett,, and L.Wei, (2013), “Effectively Selecting a Target Population for a Future Comparative Study,” Journal of the American Statistical Association, 108, 527–539.
-
(2013)
Journal of the American Statistical Association
, vol.108
, pp. 527-539
-
-
Zhao, L.1
Tian, L.2
Cai, T.3
Claggett, B.4
Wei, L.5
-
30
-
-
1042279313
-
Hypothesis Testing in Mixture Regression Models
-
H.Zhu,, and H.Zhang, (2004), “Hypothesis Testing in Mixture Regression Models,” Journal of the Royal Statistical Society, Series B, 66, 3–16.
-
(2004)
Journal of the Royal Statistical Society, Series B
, vol.66
, pp. 3-16
-
-
Zhu, H.1
Zhang, H.2
-
31
-
-
28044458989
-
Asymptotics for Estimation and Testing Procedures Under Loss of Identifiability
-
——— (2006), “Asymptotics for Estimation and Testing Procedures Under Loss of Identifiability,” Journal of Multivariate Analysis, 97, 19–45.
-
(2006)
Journal of Multivariate Analysis
, vol.97
, pp. 19-45
-
-
|