-
1
-
-
0009304888
-
Critical attractive spin systems
-
BEZUIDENHOUT, C. AND GRAY, L. (1994). Critical attractive spin systems. Ann. Prob. 22, 1160-1194.
-
(1994)
Ann. Prob.
, vol.22
, pp. 1160-1194
-
-
Bezuidenhout, C.1
Gray, L.2
-
2
-
-
0001103678
-
The critical contact process dies out
-
BEZUIDENHOUT, C. AND GRIMMETT, G. (1990). The critical contact process dies out. Ann. Prob. 18, 1462-1482.
-
(1990)
Ann. Prob.
, vol.18
, pp. 1462-1482
-
-
Bezuidenhout, C.1
Grimmett, G.2
-
3
-
-
0000236076
-
Exponential decay for subcritical contact and percolation processes
-
BEZUIDENHOUT, C. AND GRIMMETT, G. (1991). Exponential decay for subcritical contact and percolation processes. Ann. Appl. Prob. 19, 984-1009.
-
(1991)
Ann. Appl. Prob.
, vol.19
, pp. 984-1009
-
-
Bezuidenhout, C.1
Grimmett, G.2
-
4
-
-
0000221088
-
On the growth of one-dimensional contact processes
-
DURRETT, R. (1980). On the growth of one-dimensional contact processes. Ann. Prob. 8, 890-907.
-
(1980)
Ann. Prob.
, vol.8
, pp. 890-907
-
-
Durrett, R.1
-
5
-
-
0039672580
-
Stochastic growth models
-
Percolation Theory and Ergodic Theory of Infinite Particle Systems Springer, New York
-
DURRETT, R. AND SCHONMANN, R. H. (1987). Stochastic growth models. In Percolation Theory and Ergodic Theory of Infinite Particle Systems (IMA Vol. Math. Appl. 8), Springer, New York, pp. 85-119.
-
(1987)
IMA Vol. Math. Appl.
, vol.8
, pp. 85-119
-
-
Durrett, R.1
Schonmann, R.H.2
-
6
-
-
0000129207
-
Limit theorems for nonergodic set-valued Markov processes
-
GRIFFEATH, D. (1978). Limit theorems for nonergodic set-valued Markov processes. Ann. Prob. 6, 379-387.
-
(1978)
Ann. Prob.
, vol.6
, pp. 379-387
-
-
Griffeath, D.1
-
8
-
-
0000829680
-
Contact interactions on a lattice
-
HARRIS, T. E. (1974). Contact interactions on a lattice. Ann. Prob. 2, 969-988.
-
(1974)
Ann. Prob.
, vol.2
, pp. 969-988
-
-
Harris, T.E.1
-
9
-
-
0033425034
-
The two-stage contact process
-
KRONE, S. M. (1999). The two-stage contact process. Ann. Appl. Prob. 9, 331-351.
-
(1999)
Ann. Appl. Prob.
, vol.9
, pp. 331-351
-
-
Krone, S.M.1
-
10
-
-
84928263930
-
Two-scale multitype contact process: Coexistence in spatially explicit metapopulations
-
LANCHIER, N. (2011). Two-scale multitype contact process: coexistence in spatially explicit metapopulations. Markov Process. Relat. Fields 17, 151-186.
-
(2011)
Markov Process. Relat. Fields
, vol.17
, pp. 151-186
-
-
Lanchier, N.1
-
11
-
-
84884153569
-
A two-stage contact process on scale-free networks
-
LI, Y. AND HAN, D. (2013). A two-stage contact process on scale-free networks. J. Statist. Phys. 153, 312-324.
-
(2013)
J. Statist. Phys.
, vol.153
, pp. 312-324
-
-
Li, Y.1
Han, D.2
-
14
-
-
0000332686
-
Ergodic theorems for the multitype contact process
-
NEUHAUSER, C. (1992). Ergodic theorems for the multitype contact process. Prob. Theory Relat. Fields 91, 467-506.
-
(1992)
Prob. Theory Relat. Fields
, vol.91
, pp. 467-506
-
-
Neuhauser, C.1
-
15
-
-
42649134108
-
On global and local critical points of extended contact process on homogenous trees
-
SUGIMINE, N., MASUDA, N., KONNO, N. AND AIHARA, K. (2008). On global and local critical points of extended contact process on homogenous trees. Math. Biosci. 213, 13-17.
-
(2008)
Math. Biosci.
, vol.213
, pp. 13-17
-
-
Sugimine, N.1
Masuda, N.2
Konno, N.3
Aihara, K.4
-
16
-
-
0001792547
-
On the critical infection rate of the one-dimensional basic contact process: Numerical results
-
ZIEZOLD, H. AND GRILLENBERGER, C. (1988). On the critical infection rate of the one-dimensional basic contact process: numerical results. J. Appl. Prob. 25, 1-8.
-
(1988)
J. Appl. Prob.
, vol.25
, pp. 1-8
-
-
Ziezold, H.1
Grillenberger, C.2
|